Klin Padiatr 2006; 218(6): 296-302
DOI: 10.1055/s-2006-942271
Original Article

© Georg Thieme Verlag Stuttgart · New York

Pathology and Molecular Biology of Teratomas in Childhood and Adolescence

Pathologie und Molekularbiologie der Teratome im Kindes- und JugendalterD. Harms1 , [*] , S. Zahn2 , U. Göbel2 , D. T. Schneider2
  • 1Kiel Pediatric Tumor Registry, Institute of Pathology, Christian-Albrechts-University, Kiel, Germany
  • 2Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, UKD, Heinrich-Heine-University, Düsseldorf
Further Information

Publication History

Publication Date:
02 November 2006 (online)

Abstract

The biologic behaviour of teratomas depends on various interdependent clinical and epidemiologic variables such as the age at diagnosis, sex, tumor site, histology which all correlate to different cytogenetic and molecular biologic aberrations. Thus, testicular teratomas of infancy are generally benign. Accordingly, prepubertal teratomas show no cytogenetic or molecular genetic aberrations. In contrast, postpubertal testicular teratomas can present as clinically malignant tumors and may show complex cytogenetic aberrations such as the isochromosome 12p, which is pathognomonic of malignant germ cell tumors. Notably, teratomas of both age groups show an at least partial erasure of the genomic imprinting, correlating with their origin from primordial germ cells. The Kiel Pediatric Tumor Registry includes 541 teratoma specimens, and among these, the most frequent tumor sites (in descending order) are: the sacrococcygeal region (33.8 %), the ovaries (31.2 %) and the testes (10.5 %). Rare localizations include the mediastinum, the retroperitoneum, the head and neck region as well as the central nervous system. The WHO classification of germ cell tumors distinguishes mature and immature teratomas as well as teratomas with malignant transformation. In immature teratomas, primitive neuroectodermal structures predominate. According to the grading system (Gonzalez-Crussi, 1982), mature teratomas (G0) are more frequent (54.5 %) than immature teratomas (G1-G3, 45.5 %). Only 7.8 % of all teratomas show the highest grade of immaturity (G3). The frequency of additional microscopic foci of malignant yolk sac tumor correlates with the grade of immaturity. In sacrococcygeal teratomas, the yolk sac tumor microfoci may give rise to a malignant relapse after incomplete resection. The rare teratomas with malignant transformation contain components with “conventional” somatic type malignancy such as leukaemia, carcinoma or sarcoma. Here, molecular genetic analysis has demonstrated the origin of the somatic malignancy from a malignant transformation within the germ cell tumor with retention of the cytogenetic changes characteristic of malignant germ cell tumors.

Zusammenfassung

Das biologische Verhalten der Teratome (wie auch das der übrigen Keimzelltumoren) wird durch die Faktoren Lebensalter zum Zeitpunkt der Diagnose, Geschlecht, Tumorlokalisation, Histologie sowie Zytogenetik und Molekularbiologie richtunggebend beeinflusst. So sind etwa die Hodenteratome des jungen Kindes prinzipiell gutartig, während diese Tumoren von der Pubertät an in aller Regel bösartig sind. Entsprechend zeigen präpubertäre Teratome keine konsistenten zyto- oder molekulargenetischen Aberrationen. Bei testikulären Teratomen im Erwachsenenalter finden sich hingegen komplexe genetische Aberrationen, einschließlich des pathogomonischen Markers für maligne Keimzelltumoren, des Isochromosoms 12p. Teratome aller Altersgruppen zeigen einen zumindest teilweisen Verlust des genomischen Imprinting, der auf ihre histogenetische Abstammung von primordialen Keimzellen hinweist. Hauptlokalisationen der Teratome sind in abnehmender Häufigkeit die Steißbeinregion (183/541 = 33,8 % aller Teratompräparate), Ovarien (31,2 %) und Hoden (10,5 %). Seltenere Lokalisationen sind das Mediastinum, das Retroperitoneum, die Kopf- und Halsregion sowie das ZNS. Nach den WHO-Klassifikationen werden reife und unreife Teratome sowie Teratome mit maligner Transformation unterschieden. Innerhalb der unreifen Tumorareale dominieren primitive neuroektodermale Strukturen quantitativ. Nach dem Gradingverfahren von Gonzalez-Crussi (1982) sind reife Teratome (G0) mit 54,5 % der Präparate etwas häufiger als die unreifen Teratome (G1-G3) zusammengenommen (45,5 %). Nur 7,8 % aller Teratome zeigen den höchsten Unreifegrad G3. Je unreifer Teratome sind, desto größer ist die Wahrscheinlichkeit zusätzlicher, oft nur mikroskopisch kleiner Dottersacktumorherde, welche die Prognose nach inkompletter Resektion ungünstig beeinflussen, jedoch offensichtlich chemosensibel sind. Die sehr seltenen Teratome mit maligner Transformation enthalten „konventionelle” (somatische) Malignomkomponenten, wie Leukämien, Karzinome und Sarkome verschiedenen Typs. Molekulargenetische Untersuchungen haben gezeigt, dass es sich hier um eine durch sekundäre Kanzerisierung mit Retention der für maligne Keimzelltumoren charakteristischen zytogenetischen Veränderungen handelt.

References

  • 1 Afifi H Y, Bosl G J, Burt M E. Mediastinal growing teratoma syndrome.  Ann Thorac Surg. 1997;  64 359-362
  • 2 Best D H, Butz G M, Moller K, Coleman W B, Thomas D B. Molecular analysis of an immature ovarian teratoma with gliomatosis peritonei and recurrence suggests genetic independence of multiple tumors.  Int J Oncol. 2004;  25 17-25
  • 3 Biskup W, Calaminus G, Schneider D T, Leuschner I, Göbel U. Teratoma with malignant transformation: experiences of the cooperative GPOH protocols MAKEI 83/86/89/96.  Klin Pädiatr. 2006;  ,  (in press)
  • 4 Bussey K J, Lawce H J, Olson S B, Arthur D C, Kalousek D K, Krailo M, Giller R, Heifetz S, Womer R, Magenis R E. Chromosome abnormalities of eighty-one pediatric germ cell tumors: sex-, age-, site-, and histopathology-related differences - a Children's Cancer Group study.  Genes Chromosomes Cancer. 1999;  25 134-146
  • 5 Creutzig U, Jürgens H, Herold R, Göbel U, Henze G. Concepts of the Society of Paediatric Oncology and Haematology (GPOH) and the German Competence Network in Paediatric Oncology and Haematology for the quality controlled development in paediatric oncology.  Klin Pädiatr. 2004;  216 379-383
  • 6 Dehner L P. Gonadal and extragonadal germ cell neoplasia of childhood.  Hum Pathol. 1983;  14 493-511
  • 7 Emerson R E, Ulbright T M, Zhang S, Foster R S, Eble J N, Cheng L. Nephroblastoma arising in a germ cell tumor of testicular origin.  Am J Surg Pathol. 2004;  28 687-692
  • 8 Ferguson A W, Katabuchi H, Ronnett B M, Cho K R. Glial implants in gliomatosis peritonei arise from normal tissue, not from the associated teratoma.  Am J Pathol. 2001;  159 51-55
  • 9 Fritsch M K, Schneider D T, Schuster A E, Murdoch F E, Perlman E J. Activation of wnt/β-catenin signaling in distinct histologic subtypes of human germ cell tumors: A Children's Oncology Group Study.  Pediatr Develop Pathol. 2006;  9 115-131
  • 10 Göbel U, Calaminus G, Blohm M, Booss D, Felberbauer F, Hofmann U, Holschneider A M, Willnow U, Harms D. Extracranial non-testicular teratoma in childhood and adolescence: introduction of a risk score for stratification of therapy.  Klin Padiatr. 1997;  209 228-234
  • 11 Göbel U, Calaminus G, Engert J, Kaatsch P, Gadner H, Bökkerink J P, Hass R J, Waag K, Blohm M E, Dippert S, Teske C, Harms D. Teratomas in infancy and childhood.  Med Pediatr Oncol. 1998;  31 8-15
  • 12 Göbel U, Calaminus G, Schneider D T, Bernbeck B, Koch S, Harms D. The malignant potential of teratomas. The MAKEI experiences and implications for the new protocol.  Klin Pädiatr. 2006;  ,  (in press)
  • 13 Gonzalez-Crussi F. Extragonadal teratomas. Atlas of tumor pathology, second series, fascicle 18. AFIP, Washington, D.C. 1982
  • 14 Gonzalez-Crussi F, Winkler R F, Mirkin D L. Sacrococcygeal teratomas in infants and children: relationship of histology and prognosis in 40 cases.  Arch Pathol Lab Med. 1978;  102 420-425
  • 15 Graf N, Göbel U. Clinical trials and studies of the German Society for Paediatric Oncology and Haematology (GPOH) and the European Directive for the Implementation of Good Clinical Practice in the Conduct of Clinical Trials.  Klin Padiatr. 2004;  216 129-131
  • 16 Harms D, Jänig U. Immature teratomas of childhood. Report of 21 cases.  Pathol Res Pract. 1985;  179 388-400
  • 17 Harms D, Jänig U, Göbel U. Gliomatosis peritonei in childhood and adolescence. Clinicopathological study of 13 cases including immunohistochemical findings.  Pathol Res Pract. 1989;  184 422-430
  • 18 Heerema-McKenney A, Harrison M R, Bratton B, Farrell J, Zaloudek C. Congenital teratoma: a clinicopathologic study of 22 fetal and neonatal tumors.  Am J Surg Pathol. 2005;  29 29-38
  • 19 Heifetz S A, Cushing B, Giller R, Shuster J J, Stolar C J, Vinocur C D, Hawkins E P. Immature teratomas in children: pathologic considerations: a report from the combined Pediatric Oncology Group/Children's Cancer Group.  Am J Surg Pathol. 1998;  22 1115-1124
  • 20 Hu J, Schuster A E, Fritsch M K, Schneider D T, Perlman E J. Deletion mapping of 6q21-26 and frequency of 1p36 deletion in childhood endodermal sinus tumors by microsatellite analysis.  Oncogene. 2000;  20 8042-8044
  • 21 Kaatsch P, Kaletsch U, Michaelis J. Annual Report of the German Childhood Cancer Registry.  www.kinderkrebsregister.de 2004
  • 22 Kernek K M, Ulbright T M, Zhang S, Billings S D, Cummings O W, Henley J D, Michael H, Brunelli M, Martignoni G, Foster R S, Eble J N, Cheng L. Identical allelic losses in mature teratoma and other histologic components of malignant mixed germ cell tumors of the testis.  Am J Pathol. 2003;  163 2477-2484
  • 23 Kwan M Y, Kalle W, Lau G T, Chan J K. Is gliomatosis peritonei derived from the associated ovarian teratoma?.  Hum Pathol. 2004;  35 685-688
  • 24 Logothetis C J, Samuels M L, Trindade A, Johnson D E. The growing teratoma syndrome.  Cancer. 1982;  50 1629-1635
  • 25 Mayer F, Stoop H, Scheffer G L, Scheper R, Oosterhuis J W, Looijenga L H, Bokemeyer C. Molecular determinants of treatment response in human germ cell tumors.  Clin Cancer Res. 2003;  9 767-773
  • 26 Motzer R J, Amsterdam A, Prieto V, Sheinfeld J, Murty V V, Mazumdar M, Bosl G J, Chaganti R S, Reuter V E. Teratoma with malignant transformation: diverse malignant histologies arising in men with germ cell tumors.  J Urol. 1998;  159 133-138
  • 27 Nogales Jr F F, Talerman A, Kubik-Huch R A, Tavassoli F, Devouassoux-Shisheboran M. Germ cell tumours. In: Tavassoli F, Devilee P (eds). Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon 2003; 163-175
  • 28 Oosterhuis J W, Looijenga L H. Testicular germ-cell tumours in a broader perspective.  Nat Rev Cancer. 2005;  5 210-222
  • 29 Perlman E J, Hu J, Ho D, Cushing B, Lauer S, Castleberry R P. Genetic analysis of childhood endodermal sinus tumors by comparative genomic hybridization.  J Pediatr Hematol Oncol. 2000;  22 100-105
  • 30 Poulos C, Cheng L, Zhang S, Gersell D J, Ulbright T M. Analysis of ovarian teratomas for isochromosome 12p: evidence supporting a dual histogenetic pathway for teratomatous elements.  Mod Pathol. 2006;  19 766-771
  • 31 Riopel M A, Spellerberg A, Griffin C A, Perlman E J. Genetic analysis of ovarian germ cell tumors by comparative genomic hybridization.  Cancer Res. 1998;  58 3105-3110
  • 32 Robboy S J, Scully R E. Ovarian teratoma with glial implants on the peritoneum. An analysis of 12 cases.  Hum Pathol. 1970;  1 643-653
  • 33 Rosenblum M, Matsutani M, van Meir E G. CNS germ cell tumours. In: Kleihues P, Cavenee W (eds). Pathology and genetics of tumours of the nervous system. IARC Press, Lyon 2000; 207-214
  • 34 Schneider D T, Calaminus G, Koch S, Teske C, Schmidt P, Haas R J, Harms D, Göbel U. Epidemiological analysis of 1442 children and adolescents registered in the German Germ Cell Tumor Protocols.  Pediatr Blood Cancer. 2004;  42 169-175
  • 35 Schneider D T, Schuster A E, Fritsch M K, Calaminus G, Göbel U, Harms D, Lauer S, Olson T, Perlman E J. Genetic analysis of mediastinal nonseminomatous germ cell tumors in children and adolescents.  Genes Chromosomes Cancer. 2002;  34 115-125
  • 36 Schneider D T, Schuster A E, Fritsch M K, Calaminus G, Harms D, Göbel U, Perlman E J. Genetic analysis of childhood germ cell tumors with comparative genomic hybridization.  Klin Pädiatr. 2001;  213 204-211
  • 37 Schneider D T, Schuster A E, Fritsch M K, Hu J, Olson T, Lauer S, Göbel U, Perlman E J. Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors.  Cancer Res. 2001;  61 7268-7276
  • 38 Schneider D T, Zahn S, Sievers S, Alemazkour K, Reifenberger G, Wiestler O D, Calaminus G, Göbel U, Perlman E J. Molecular genetic analysis of central nervous system germ cell tumors with comparative genomic hybridization.  Mod Pathol. 2006;  19 864-873
  • 39 Sievers S, Alemazkour K, Zahn S, Perlman E J, Gillis A J, Looijenga L, Göbel U, Schneider D T. IGF2/H19 imprinting analysis with the methylation-sensitive single nucleotide primer extension method in human germ cell tumors reflects their origin from different stages of primordial germ cell development.  Genes Chromosomes Cancer. 2005;  44 256-264
  • 40 Stock C, Ambros I M, Lion T, Haas O A, Zoubek A, Gadner H, Ambros P F. Detection of numerical and structural chromosome abnormalities in pediatric germ cell tumors by means of interphase cytogenetics.  Genes Chromosomes Cancer. 1994;  11 40-50
  • 41 Teilum G, Albrechtsen R, Norgaard-Pedersen B. The histogenetic-embryologic basis for reappearance of alpha-fetoprotein in endodermal sinus tumors (yolk sac tumors) and teratomas.  Acta Pathol Microbiol Scand [A]. 1975;  83 80-86
  • 42 Truong L D, Jurco III S, McGavran M H. Gliomatosis peritonei. Report of two cases and review of literature.  Am J Surg Pathol. 1982;  6 443-449
  • 43 Ulbright T M. Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues.  Mod Pathol. 2005;  18 (Suppl 2) S61-S79
  • 44 van Echten J, Sleijfer D T, Wiersema J, Schraffordt K H, Oosterhuis J W, de Jong B. Cytogenetics of primary testicular nonseminoma, residual mature teratoma, and growing teratoma lesion in individual patients.  Cancer Genet Cytogenet. 1997;  96 1-6
  • 45 van Gurp R J, Oosterhuis J W, Kalscheuer V, Mariman E C, Looijenga L H. Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors.  J Natl Cancer Inst. 1994;  86 1070-1075
  • 46 Veltman I, Veltman J, Janssen I, Hulsbergen-van de K C, Oosterhuis W, Schneider D, Stoop H, Gillis A, Zahn S, Looijenga L, Göbel U, van Kessel A G. Identification of recurrent chromosomal aberrations in germ cell tumors of neonates and infants using genomewide array-based comparative genomic hybridization.  Genes Chromosomes Cancer. 2005;  43 367-376
  • 47 Ward S P, Dehner L P. Sacrococcygeal teratoma with nephroblastoma (Wilms tumor): a variant of extragonadal teratoma in childhood. A histologic and ultrastructural study.  Cancer. 1974;  33 1355-1363
  • 48 Younger C, Ulbright T M, Zhang S, Billings S D, Cummings O W, Foster R S, Eble J N, Cheng L. Molecular evidence supporting the neoplastic nature of some epidermoid cysts of the testis.  Arch Pathol Lab Med. 2003;  127 858-860
  • 49 Zahn S, Sievers S, Alemazkour K, Orb S, Harms D, Schulz W A, Calaminus G, Göbel U, Schneider D T. Imbalances of chromosome 1p in pediatric and adult germ cell tumors are caused by true allelic loss: a combined comparative genomic hybridization and microsatellite analysis.  Genes Chromosomes Cancer. 2006;  ,  (in press)

1 Presented in part at the International Scientific Symposium on the occasion of the 10th anniversary of the regional Pediatric Hematologic and Oncologic Center in Perm, Russia, 13th of June 2006.

PD Dr. D. T. Schneider

Klinik für Kinder-Onkologie, -Hämatologie und -Immunologie · Heinrich-Heine-Universität

Moorenstr. 5

40225 Düsseldorf

Phone: 02 11/8 11 64 91

Fax: 02 11/8 10 49 82

Email: dominik.schneider@uni-duesseldorf.de

    >