Semin Respir Crit Care Med 2006; 27(1): 051-067
DOI: 10.1055/s-2006-933674
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Relationship of Minimal Inhibitory Concentration and Bactericidal Activity to Efficacy of Antibiotics for Treatment of Ventilator-Associated Pneumonia

Sungmin Kiem1 , 2 , Jerome J. Schentag1 , 2
  • 1University at Buffalo School of Pharmacy, Buffalo, New York
  • 2CPL Associates, LLC, Amherst, New York
Further Information

Publication History

Publication Date:
01 March 2006 (online)

ABSTRACT

Although minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) have been used as the most popular prediction tools for antimicrobial action, they have shortcomings. The MIC and MBC do not consider time-related antimicrobial effects, such as killing rate and postantibiotic effect. In this regard, the concept of pharmacokinetic and pharmacodynamic (PK/PD) modeling has been introduced to help interpret determinations of susceptibility breakpoints. Although area under the inhibitory concentration-time curve (AUIC) can be used as a universal PK/PD parameter, target magnitudes of the parameter have to be high enough to exert rapid bactericidal activity (> 250) and to prevent selection and induction of resistance (> 100). For vancomycin used in treatment of methicillin-resistant Staphylococcus aureus pneumonia, a much higher AUIC (400) is suggested to avoid treatment failure. For resistant gram-negative bacteria, such as Pseudomonas aeruginosa, the usual dosage of fourth-generation cephalosporins, carbapenems, and fluoroquinolones cannot achieve the target AUICs. Either combination therapy or higher dosage should be administered to achieve target AUICs and prevent the potential for failure. Unresolved issues, such as influence of protein binding, PK/PD at tissue sites versus blood, the impact of the immune system, should be addressed to refine the applicability of PK/PD in antibiotic treatment.

REFERENCES

  • 1 Kollef M H, Sherman G, Ward S, Fraser V J. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients.  Chest. 1999;  115 462-474
  • 2 Alvarez-Lerma F. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. ICU-Acquired Pneumonia Study Group.  Intensive Care Med. 1996;  22 387-394
  • 3 Dupont H, Mentec H, Sollet J P, Bleichner G. Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia.  Intensive Care Med. 2001;  27 355-362
  • 4 Iregui M, Ward S, Sherman G, Fraser V J, Kollef M H. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia.  Chest. 2002;  122 262-268
  • 5 Kollef M H. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients.  Clin Infect Dis. 2000;  31(Suppl 4) S131-S138
  • 6 Hoffken G, Niederman M S. Nosocomial pneumonia: the importance of a de-escalating strategy for antibiotic treatment of pneumonia in the ICU.  Chest. 2002;  122 2183-2196
  • 7 Jorgensen J H, Ferraro M J. Antimicrobial susceptibility testing: general principles and contemporary practices.  Clin Infect Dis. 1998;  26 973-980
  • 8 Odenholt I, Cars T, Lowdin E. Pharmacodynamic studies of trovafloxacin and grepafloxacin in vitro against gram-positive and gram-negative bacteria.  J Antimicrob Chemother. 2000;  46 35-43
  • 9 Fung-Tomc J C, Gradelski E, Valera L, Kolek B, Bonner D P. Comparative killing rates of fluoroquinolones and cell wall-active agents.  Antimicrob Agents Chemother. 2000;  44 1377-1380
  • 10 Craig W A, Ebert S C. Killing and regrowth of bacteria in vitro: a review.  Scand J Infect Dis Suppl. 1990;  74 63-70
  • 11 Craig W A, Gudmundsson S. Postantibiotic effect. In: Lorian V Antibiotics in Laboratory Medicine. Baltimore MD; Williams and Wilkins 1996: 296-329
  • 12 Odenholt I. Pharmacodynamic effects of subinhibitory antibiotic concentrations.  Int J Antimicrob Agents. 2001;  17 1-8
  • 13 McDonald P J, Wetherall B L, Pruul H. Postantibiotic leukocyte enhancement: increased susceptibility of bacteria pretreated with antibiotics to activity of leukocytes.  Rev Infect Dis. 1981;  3 38-44
  • 14 Craig W A. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men.  Clin Infect Dis. 1998;  26 1-10
  • 15 Schentag J J, Nix D E, Adelman M H. Mathematical examination of dual individualization principles, I: Relationships between AUC above MIC and area under the inhibitory curve for cefmenoxime, ciprofloxacin, and tobramycin.  DICP. 1991;  25 1050-1057
  • 16 Muller M, dela Pena A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue.  Antimicrob Agents Chemother. 2004;  48 1441-1453
  • 17 Jacobs M R. How can we predict bacterial eradication?.  Int J Infect Dis. 2003;  7(Suppl 1) S13-S20
  • 18 Jacobs M R. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters.  Clin Microbiol Infect. 2001;  7 589-596
  • 19 Ferraro M J. Should we reevaluate antibiotic breakpoints?.  Clin Infect Dis. 2001;  33(Suppl 3) S227-S229
  • 20 Dudley M N, Ambrose P G. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: ready for prime time.  Curr Opin Microbiol. 2000;  3 515-521
  • 21 Mouton J W. Breakpoints: current practice and future perspectives.  Int J Antimicrob Agents. 2002;  19 323-331
  • 22 Jorgensen J H. Who defines resistance? The clinical and economic impact of antimicrobial susceptibility testing breakpoints.  Semin Pediatr Infect Dis. 2004;  15 105-108
  • 23 Drusano G L, Preston S L, Hardalo C et al.. Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint.  Antimicrob Agents Chemother. 2001;  45 13-22
  • 24 Andes D, Craig W A. Animal model pharmacokinetics and pharmacodynamics: a critical review.  Int J Antimicrob Agents. 2002;  19 261-268
  • 25 Li R C. New pharmacodynamic parameters for antimicrobial agents.  Int J Antimicrob Agents. 2000;  13 229-235
  • 26 Schentag J J, Nix D E, Forrest A, Adelman M H. AUIC: the universal parameter within the constraint of a reasonable dosing interval.  Ann Pharmacother. 1996;  30 1029-1031
  • 27 Hyatt J M, McKinnon P S, Zimmer G S, Schentag J J. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents.  Clin Pharmacokinet. 1995;  28 143-160
  • 28 Goss T F, Forrest A, Nix D E et al.. Mathematical examination of dual individualization principles, II: The rate of bacterial eradication at the same area under the inhibitory curve is more rapid for ciprofloxacin than for cefmenoxime.  Ann Pharmacother. 1994;  28 863-868
  • 29 Schentag J J, Strenkoski-Nix L C, Nix D E, Forrest A. Pharmacodynamic interactions of antibiotics alone and in combination.  Clin Infect Dis. 1998;  27 40-46
  • 30 Turnidge J. Pharmacodynamics and dosing of aminoglycosides.  Infect Dis Clin North Am. 2003;  17 503-528 v.
  • 31 Ali M Z, Goetz M B. A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides.  Clin Infect Dis. 1997;  24 796-809
  • 32 Bailey T C, Little J R, Littenberg B, Reichley R M, Dunagan W C. A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides.  Clin Infect Dis. 1997;  24 786-795
  • 33 Gilbert D N. Meta-analyses are no longer required for determining the efficacy of single daily dosing of aminoglycosides.  Clin Infect Dis. 1997;  24 816-819
  • 34 Hatala R, Dinh T T, Cook D J. Single daily dosing of aminoglycosides in immunocompromised adults: a systematic review.  Clin Infect Dis. 1997;  24 810-815
  • 35 Bodey G P, Ketchel S J, Rodriguez V. A randomized study of carbenicillin plus cefamandole or tobramycin in the treatment of febrile episodes in cancer patients.  Am J Med. 1979;  67 608-616
  • 36 Daenen S, Erjavec Z, Uges D R, De Vries-Hospers H G, De Jonge P, Halie M R. Continuous infusion of ceftazidime in febrile neutropenic patients with acute myeloid leukemia.  Eur J Clin Microbiol Infect Dis. 1995;  14 188-192
  • 37 Benko A S, Cappelletty D M, Kruse J A, Rybak M J. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections.  Antimicrob Agents Chemother. 1996;  40 691-695
  • 38 McNabb J J, Nightingale C H, Quintiliani R, Nicolau D P. Cost-effectiveness of ceftazidime by continuous infusion versus intermittent infusion for nosocomial pneumonia.  Pharmacotherapy. 2001;  21 549-555
  • 39 Nicolau D P, McNabb J, Lacy M K, Quintiliani R, Nightingale C H. Continuous versus intermittent administration of ceftazidime in intensive care unit patients with nosocomial pneumonia.  Int J Antimicrob Agents. 2001;  17 497-504
  • 40 Grant E M, Kuti J L, Nicolau D P, Nightingale C, Quintiliani R. Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin-tazobactam program in a large community teaching hospital.  Pharmacotherapy. 2002;  22 471-483
  • 41 Craig W A. Antimicrobial resistance issues of the future.  Diagn Microbiol Infect Dis. 1996;  25 213-217
  • 42 Andes D, Craig W A. In vivo activities of amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae: application to breakpoint determinations.  Antimicrob Agents Chemother. 1998;  42 2375-2379
  • 43 Woodnutt G, Berry V. Two pharmacodynamic models for assessing the efficacy of amoxicillin-clavulanate against experimental respiratory tract infections caused by strains of Streptococcus pneumoniae .  Antimicrob Agents Chemother. 1999;  43 29-34
  • 44 Craig W A. Does the dose matter?.  Clin Infect Dis. 2001;  33(Suppl 3) S233-S237
  • 45 Craig W A, Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media.  Pediatr Infect Dis J. 1996;  15 255-259
  • 46 Dagan R, Klugman K P, Craig W A, Baquero F. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy.  J Antimicrob Chemother. 2001;  47 129-140
  • 47 Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig W A. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model.  J Infect Dis. 1988;  158 831-847
  • 48 Schentag J J, Smith I L, Swanson D J et al.. Role for dual individualization with cefmenoxime.  Am J Med. 1984;  77 43-50
  • 49 Craig W A. The hidden impact of antibacterial resistance in respiratory tract infection. re-evaluating current antibiotic therapy.  Respir Med. 2001;  95(Suppl A) S12-S19 , discussion S26-S27
  • 50 Vesga O, Craig W. Activity of levofloxacin against penicillin resistant Streptococcus pneumoniae in normal and neutropenic mice. Paper presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy. September 15-18, 1996 New Orleans, LA;
  • 51 Craig W. Clinical relevance of pharmacokinetic/pharmacodynamic properties of antimicrobials for therapy of drug resistant Streptococcus pneumoniae infection. Paper presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy. September 24-27, 2000 Toronto, ON Canada;
  • 52 Lacy M K, Lu W, Xu X et al.. Pharmacodynamic comparisons of levofloxacin, ciprofloxacin, and ampicillin against Streptococcus pneumoniae in an in vitro model of infection.  Antimicrob Agents Chemother. 1999;  43 672-677
  • 53 Lister P D, Sanders C C. Pharmacodynamics of levofloxacin and ciprofloxacin against Streptococcus pneumoniae .  J Antimicrob Chemother. 1999;  43 79-86
  • 54 Schentag J J, Meagher A K, Forrest A. Fluoroquinolone AUIC Break Points and the link to bacterial killing rates, I: In vitro and animal models.  Ann Pharmacother. 2003;  37 1287-1298
  • 55 Ambrose P G, Grasela D M, Grasela T H, Passarell J, Mayer H B, Pierce P F. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections.  Antimicrob Agents Chemother. 2001;  45 2793-2797
  • 56 Forrest A, Chodosh S, Amantea M A, Collins D A, Schentag J J. Pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis.  J Antimicrob Chemother. 1997;  40(Suppl A) 45-57
  • 57 Meinl B, Hyatt J M, Forrest A, Chodosh S, Schentag J J. Pharmacokinetic/pharmacodynamic predictors of time to clinical resolution in patients with acute bacterial exacerbations of chronic bronchitis treated with a fluoroquinolone.  Int J Antimicrob Agents. 2000;  16 273-280
  • 58 Craig W A, Dalhoff A. Pharmacodynamics of fluoroquinolones in experimental animals. In: Kulman J, Dalhoff A, Zeiler HJ Quinolone Antibacterials. Vol 127. Heidelberg; Springer-Verlag 1998: 207-232
  • 59 Forrest A, Nix D E, Ballow C H, Goss T F, Birmingham M C, Schentag J J. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients.  Antimicrob Agents Chemother. 1993;  37 1073-1081
  • 60 Thomas J K, Forrest A, Bhavnani S M et al.. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy.  Antimicrob Agents Chemother. 1998;  42 521-527
  • 61 National Nosocomial Infections Surveillance (NNIS) System Report . Data summary from January 1992 to June 2002, issued August 2002.  Am J Infect Control. 2002;  30 458-475
  • 62 Hiramatsu K, Aritaka N, Hanaki H et al.. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin.  Lancet. 1997;  350 1670-1673
  • 63 Tenover F C, Biddle J W, Lancaster M V. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus .  Emerg Infect Dis. 2001;  7 327-332
  • 64 Chang S, Sievert D M, Hageman J C et al.. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene.  N Engl J Med. 2003;  348 1342-1347
  • 65 Kollef M H, Fraser V J. Antibiotic resistance in the intensive care unit.  Ann Intern Med. 2001;  134 298-314
  • 66 Chastre J, Fagon J Y. Ventilator-associated pneumonia.  Am J Respir Crit Care Med. 2002;  165 867-903
  • 67 Garau J. Why do we need to eradicate pathogens in respiratory tract infections?.  Int J Infect Dis. 2003;  7(Suppl 1) S5-S12
  • 68 Beghi G, Berni F, Carratu L et al.. Efficacy and tolerability of azithromycin versus amoxicillin/clavulanic acid in acute purulent exacerbation of chronic bronchitis.  J Chemother. 1995;  7 146-152
  • 69 Guillemot D, Carbon C, Balkau B et al.. Low dosage and long treatment duration of beta-lactam: risk factors for carriage of penicillin-resistant Streptococcus pneumoniae .  JAMA. 1998;  279 365-370
  • 70 Schrag S J, Pena C, Fernandez J et al.. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial.  JAMA. 2001;  286 49-56
  • 71 Ghaffar F, Muniz L S, Katz K et al.. Effects of amoxicillin/clavulanate or azithromycin on nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae in children with acute otitis media.  Clin Infect Dis. 2000;  31 875-880
  • 72 Ghaffar F, Muniz L S, Katz K et al.. Effects of large dosages of amoxicillin/clavulanate or azithromycin on nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae, nonpneumococcal alpha-hemolytic streptococci, and Staphylococcus aureus in children with acute otitis media.  Clin Infect Dis. 2002;  34 1301-1309
  • 73 Dagan R, Leibovitz E, Greenberg D, Yagupsky P, Fliss D M, Leiberman A. Early eradication of pathogens from middle ear fluid during antibiotic treatment of acute otitis media is associated with improved clinical outcome.  Pediatr Infect Dis J. 1998;  17 776-782
  • 74 Stratton C W. Dead bugs don't mutate: susceptibility issues in the emergence of bacterial resistance.  Emerg Infect Dis. 2003;  9 10-16
  • 75 De Lencastre H, Tomasz A. From ecological reservoir to disease: the nasopharynx, day-care centres and drug-resistant clones of Streptococcus pneumoniae .  J Antimicrob Chemother. 2002;  50(Suppl S2) 75-81
  • 76 Firsov A A, Vostrov S N, Lubenko I Y, Drlica K, Portnoy Y A, Zinner S H. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus .  Antimicrob Agents Chemother. 2003;  47 1604-1613
  • 77 Lu T, Zhao X, Li X, Hansen G, Blondeau J, Drlica K. Effect of chloramphenicol, erythromycin, moxifloxacin, penicillin and tetracycline concentration on the recovery of resistant mutants of Mycobacterium smegmatis and Staphylococcus aureus .  J Antimicrob Chemother. 2003;  52 61-64
  • 78 Zhao X, Eisner W, Perl-Rosenthal N, Kreiswirth B, Drlica K. Mutant prevention concentration of garenoxacin (BMS-284756) for ciprofloxacin-susceptible or -resistant Staphylococcus aureus .  Antimicrob Agents Chemother. 2003;  47 1023-1027
  • 79 Zinner S H, Lubenko I Y, Gilbert D et al.. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing.  J Antimicrob Chemother. 2003;  52 616-622
  • 80 Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies.  Clin Infect Dis. 2001;  33(Suppl 3) S147-S156
  • 81 Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window.  J Infect Dis. 2002;  185 561-565
  • 82 Drlica K. The mutant selection window and antimicrobial resistance.  J Antimicrob Chemother. 2003;  52 11-17
  • 83 Jumbe N, Louie A, Leary R et al.. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy.  J Clin Invest. 2003;  112 275-285
  • 84 Schentag J J, Meagher A K, Forrest A. Fluoroquinolone AUIC break points and the link to bacterial killing rates, II: Human trials.  Ann Pharmacother. 2003;  37 1478-1488
  • 85 Suh B, Craig W A. Protein binding. In: Lorian V Antibiotics in Laboratory Medicine. Baltimore; Williams and Wilkins 1996: 296-329
  • 86 Koch-Weser J, Sellers E M. Binding of drugs to serum albumin (first of two parts).  N Engl J Med. 1976;  294 311-316
  • 87 Foulds G, Shepard R M, Johnson R B. The pharmacokinetics of azithromycin in human serum and tissues.  J Antimicrob Chemother. 1990;  25(Suppl A) 73-82
  • 88 Wise R. Protein binding of beta-lactams: the effects on activity and pharmacology particularly tissue penetration. I.  J Antimicrob Chemother. 1983;  12 1-18
  • 89 Craig W A, Suh B. Protein binding and the antimicrobial effects: methods for the determination of protein binding. In: Lorian V Antibiotics in Laboratory Medicine. Baltimore; Williams and Wilkins 1996: 367-402
  • 90 Rubinstein E, Diamantstein L, Yoseph G et al.. The effect of albumin, globulin, pus and dead bacteria in aerobic and anaerobic conditions on the antibacterial activity of moxifloxacin, trovafloxacin and ciprofloxacin against Streptococcus pneumoniae, Staphylococcus aureus and Escherichia coli .  Clin Microbiol Infect. 2000;  6 678-681
  • 91 Bedos J P, Azoulay-Dupuis E, Moine P et al.. Pharmacodynamic activities of ciprofloxacin and sparfloxacin in a murine pneumococcal pneumonia model: relevance for drug efficacy.  J Pharmacol Exp Ther. 1998;  286 29-35
  • 92 Reitberg D P, Cumbo T J, Smith I L, Schentag J J. Effect of protein binding on cefmenoxime steady-state kinetics in critical patients.  Clin Pharmacol Ther. 1984;  35 64-73
  • 93 Leggett J E, Craig W A. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli.  Antimicrob Agents Chemother. 1989;  33 35-40
  • 94 Nix D E, Goodwin S D, Peloquin C A, Rotella D L, Schentag J J. Antibiotic tissue penetration and its relevance: models of tissue penetration and their meaning.  Antimicrob Agents Chemother. 1991;  35 1947-1952
  • 95 Nix D E, Goodwin S D, Peloquin C A, Rotella D L, Schentag J J. Antibiotic tissue penetration and its relevance: impact of tissue penetration on infection response.  Antimicrob Agents Chemother. 1991;  35 1953-1959
  • 96 Gladue R P, Bright G M, Isaacson R E, Newborg M F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection.  Antimicrob Agents Chemother. 1989;  33 277-282
  • 97 Baldwin D R, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: methodological considerations.  Antimicrob Agents Chemother. 1992;  36 1171-1175
  • 98 Dargaville P A, South M, Vervaart P, McDougall P N. Validity of markers of dilution in small volume lung lavage.  Am J Respir Crit Care Med. 1999;  160 778-784
  • 99 Honeybourne D, Kees F, Andrews J M, Baldwin D, Wise R. The levels of clarithromycin and its 14-hydroxy metabolite in the lung.  Eur Respir J. 1994;  7 1275-1280
  • 100 Conte Jr J E, Golden J A, Duncan S, McKenna E, Zurlinden E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin.  Antimicrob Agents Chemother. 1995;  39 334-338
  • 101 Olsen K M, San Pedro G, Gann L P, Gubbins P O, Halinski D M, Campbell Jr G D. Intrapulmonary pharmacokinetics of azithromycin in healthy volunteers given five oral doses.  Antimicrob Agents Chemother. 1996;  40 2582-2585
  • 102 Quale J, Landman D, Saurina G, Atwood E, DiTore V, Patel K. Manipulation of a hospital antimicrobial formulary to control an outbreak of vancomycin-resistant enterococci.  Clin Infect Dis. 1996;  23 1020-1025
  • 103 Rodvold K A, Gotfried M H, Danziger L H, Servi R J. Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers.  Antimicrob Agents Chemother. 1997;  41 1399-1402
  • 104 Khair O A, Andrews J M, Honeybourne D, Jevons G, Vacheron F, Wise R. Lung concentrations of telithromycin after oral dosing.  J Antimicrob Chemother. 2001;  47 837-840
  • 105 Muller-Serieys C, Soler P, Cantalloube C et al.. Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647).  Antimicrob Agents Chemother. 2001;  45 3104-3108
  • 106 Kadota J, Ishimatsu Y, Iwashita T et al.. Intrapulmonary pharmacokinetics of telithromycin, a new ketolide, in healthy Japanese volunteers.  Antimicrob Agents Chemother. 2002;  46 917-921
  • 107 Gotfried M H, Danziger L H, Rodvold K A. Steady-state plasma and bronchopulmonary characteristics of clarithromycin extended-release tablets in normal healthy adult subjects.  J Antimicrob Chemother. 2003;  52 450-456
  • 108 Rodvold K A, Danziger L H, Gotfried M H. Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azithromycin in healthy adults.  Antimicrob Agents Chemother. 2003;  47 2450-2457
  • 109 Capitano B, Mattoes H M, Shore E et al.. Steady-state intrapulmonary concentrations of moxifloxacin, levofloxacin, and azithromycin in older adults.  Chest. 2004;  125 965-973
  • 110 Yamazaki K, Ogura S, Ishizaka A, Oh-hara T, Nishimura M. Bronchoscopic microsampling method for measuring drug concentration in epithelial lining fluid.  Am J Respir Crit Care Med. 2003;  168 1304-1307
  • 111 Gerber A U, Brugger H P, Feller C, Stritzko T, Stalder B. Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics.  J Infect Dis. 1986;  153 90-97
  • 112 Roosendaal R, Bakker-Woudenberg I A, van den Berghe-van Raffe M, Michel M F. Continuous versus intermittent administration of ceftazidime in experimental Klebsiella pneumoniae pneumonia in normal and leukopenic rats.  Antimicrob Agents Chemother. 1986;  30 403-408
  • 113 Andes D, Van Ogrtop M, Craig W. Impact of neutrophils on the in-vivo activity of fluoroquinolones. Paper presented at: Infectious Diseases Society of America Annual meeting. November 18-21, 1999 Philadelphia, OA;
  • 114 Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover F C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility.  J Antimicrob Chemother. 1997;  40 135-136
  • 115 Fridkin S K, Hageman J, McDougal L K et al.. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997-2001.  Clin Infect Dis. 2003;  36 429-439
  • 116 Vancomycin-resistant Staphylococcus aureus-Pennsylvania, 2002.  MMWR Morb Mortal Wkly Rep. 2002;  51 902
  • 117 Staphylococcus aureus resistant to vancomycin-United States, 2002.  MMWR Morb Mortal Wkly Rep. 2002;  51 565-567
  • 118 Hancock R E. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria.  Clin Infect Dis. 1998;  27(Suppl 1) S93-S99
  • 119 Gibb A P, Tribuddharat C, Moore R A et al.. Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new bla IMP allele, bla IMP-7 .  Antimicrob Agents Chemother. 2002;  46 255-258
  • 120 Livermore D M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?.  Clin Infect Dis. 2002;  34 634-640
  • 121 Chow J W, Fine M J, Shlaes D M et al.. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy.  Ann Intern Med. 1991;  115 585-590
  • 122 Cosgrove S E, Kaye K S, Eliopoulous G M, Carmeli Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species.  Arch Intern Med. 2002;  162 185-190
  • 123 Bradford P A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat.  Clin Microbiol Rev. 2001;  14 933-951
  • 124 Manikal V M, Landman D, Saurina G, Oydna E, Lal H, Quale J. Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: citywide prevalence, interinstitutional spread, and relation to antibiotic usage.  Clin Infect Dis. 2000;  31 101-106
  • 125 Landman D, Quale J M, Mayorga D et al.. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned.  Arch Intern Med. 2002;  162 1515-1520
  • 126 Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City.  Clin Infect Dis. 2003;  37 214-220
  • 127 Urban C, Segal-Maurer S, Rahal J J. Considerations in control and treatment of nosocomial infections due to multidrug-resistant Acinetobacter baumannii .  Clin Infect Dis. 2003;  36 1268-1274
  • 128 Schentag J J. Antimicrobial management strategies for gram-positive bacterial resistance in the intensive care unit.  Crit Care Med. 2001;  29 N100-N107
  • 129 Moise P A, Forrest A, Bhavnani S M, Birmingham M C, Schentag J J. Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus .  Am J Health Syst Pharm. 2000;  57(Suppl 2) S4-S9
  • 130 Haraga I, Nomura S, Fukamachi S et al.. Emergence of vancomycin resistance during therapy against methicillin-resistant Staphylococcus aureus in a burn patient-importance of low-level resistance to vancomycin.  Int J Infect Dis. 2002;  6 302-308
  • 131 Moellering Jr R C. Monitoring serum vancomycin levels: climbing the mountain because it is there?.  Clin Infect Dis. 1994;  18 544-546
  • 132 Delgado Jr G, Neuhauser M M, Bearden D T, Danziger L H. Quinupristin-dalfopristin: an overview.  Pharmacotherapy. 2000;  20 1469-1485
  • 133 Eliopoulos G M. Quinupristin-dalfopristin and linezolid: evidence and opinion.  Clin Infect Dis. 2003;  36 473-481
  • 134 Craig W, Ebert S. Pharmacodynamic activities of RP 50500 in an animal infection model. Paper presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy. October 17-20, 1993 New Orleans, LA;
  • 135 Moellering R C. Linezolid: the first oxazolidinone antimicrobial.  Ann Intern Med. 2003;  138 135-142
  • 136 Andes D, van Ogtrop M L, Peng J, Craig W A. In vivo pharmacodynamics of a new oxazolidinone (linezolid).  Antimicrob Agents Chemother. 2002;  46 3484-3489
  • 137 MacGowan A P. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with gram-positive infections.  J Antimicrob Chemother. 2003;  51(Suppl 2) ii17-ii25
  • 138 Boselli E, Breilh D, Rimmele T et al.. Pharmacokinetics and intrapulmonary concentrations of linezolid administered to critically ill patients with ventilator-associated pneumonia.  Crit Care Med. 2005;  33 1529-1533
  • 139 Sieradzki K, Roberts R B, Haber S W, Tomasz A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection.  N Engl J Med. 1999;  340 517-523
  • 140 Climo M W, Patron R L, Archer G L. Combinations of vancomycin and beta-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin.  Antimicrob Agents Chemother. 1999;  43 1747-1753
  • 141 Howe R A, Wootton M, Bennett P M, MacGowan A P, Walsh T R. Interactions between methicillin and vancomycin in methicillin-resistant Staphylococcus aureus strains displaying different phenotypes of vancomycin susceptibility.  J Clin Microbiol. 1999;  37 3068-3071
  • 142 Kim Y S, Kiem S, Yun H J et al.. Efficacy of vancomycin-beta-lactam combinations against heterogeneously vancomycin-resistant Staphylococcus aureus (hetero-VRSA).  J Korean Med Sci. 2003;  18 319-324
  • 143 Sweeney M T, Zurenko G E. In vitro activities of linezolid combined with other antimicrobial agents against staphylococci, enterococci, pneumococci, and selected gram-negative organisms.  Antimicrob Agents Chemother. 2003;  47 1902-1906
  • 144 Batard E, Jacqueline C, Boutoille D et al.. Combination of quinupristin-dalfopristin and gentamicin against methicillin-resistant Staphylococcus aureus: experimental rabbit endocarditis study.  Antimicrob Agents Chemother. 2002;  46 2174-2178
  • 145 Allen G P, Cha R, Rybak M J. In vitro activities of quinupristin-dalfopristin and cefepime, alone and in combination with various antimicrobials, against multidrug-resistant staphylococci and enterococci in an in vitro pharmacodynamic model.  Antimicrob Agents Chemother. 2002;  46 2606-2612
  • 146 Sgarabotto D, Cusinato R, Narne E et al.. Synercid plus vancomycin for the treatment of severe methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections: evaluation of 5 cases.  Scand J Infect Dis. 2002;  34 122-126
  • 147 Scotton P G, Rigoli R, Vaglia A. Combination of quinupristin/dalfopristin and glycopeptide in severe methicillin-resistant staphylococcal infections failing previous glycopeptide regimens.  Infection. 2002;  30 161-163
  • 148 Pavie J, Lefort A, Zarrouk V et al.. Efficacies of quinupristin-dalfopristin combined with vancomycin in vitro and in experimental endocarditis due to methicillin-resistant Staphylococcus aureus in relation to cross-resistance to macrolides, lincosamides, and streptogramin B- type antibiotics.  Antimicrob Agents Chemother. 2002;  46 3061-3064
  • 149 Moise-Broder P A, Forrest A, Jagodzinsk L M, Schentag J J. Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) failing vancomycin (Vm): results of increasing Vm versus adding quinupristin-dalfopristin (Q/D) to Vm. Paper presented at: Infectious Diseases Society of America Annual Meeting. October 24-27, 2002 Chicago, IL;
  • 150 Ambrose P G, Owens Jr R C, Garvey M J, Jones R N. Pharmacodynamic considerations in the treatment of moderate to severe pseudomonal infections with cefepime.  J Antimicrob Chemother. 2002;  49 445-453
  • 151 Tam V H, McKinnon P S, Akins R L, Drusano G L, Rybak M J. Pharmacokinetics and pharmacodynamics of cefepime in patients with various degrees of renal function.  Antimicrob Agents Chemother. 2003;  47 1853-1861
  • 152 Tam V H, McKinnon P S, Akins R L, Rybak M J, Drusano G L. Pharmacodynamics of cefepime in patients with gram-negative infections.  J Antimicrob Chemother. 2002;  50 425-428
  • 153 Drusano G L. Prevention of resistance: a goal for dose selection for antimicrobial agents.  Clin Infect Dis. 2003;  36 S42-S50

Jerome J SchentagPharm.D. 

University at Buffalo School of Pharmacy

517 Hochstetter Hall, Buffalo, NY 14260

Email: schentag@buffalo.edu

    >