Zusammenfassung
Die Stochastische-Resonanz-Theorie beschreibt Funktionsmechanismen dynamischer Systeme
verschiedener Wissenschaftsbereiche. Entgegen dem üblichen Systemverständnis kann
das Verhalten nichtlinearer Systeme, wie z. B. das menschliche Nervensystem, verbessert
werden, wenn repetitive Reizkonfigurationen (z. B. Vibrationsreize) mit Störeinflüssen
unterlegt werden. Verschiedene neurobiologische Analysen zeigen eine erhöhte Sensitivität
von Rezeptoren für Stochastische-Resonanz-Vibrationsreize im Vergleich zu harmonischen
Sinus-Reizkonfigurationen. Klinische Studien beschreiben therapeutische Effekte von
Stochastischen-Resonanz-Stimuli u. a. bei neurodegenerativen Krankheitsbildern. Erklärungsansätze
liegen v. a. im Bereich der Informationsselektion.
Abstract
Stochastic resonance describes the behaviour of dynamic systems in multiple scientific
disciplines. In contrast to our usual understanding, stochastic resonance can improve
the functioning of nonlinear systems e. g. the human nervous system. Various neurobiological
analyses showed significantly higher sensitivity of the human sensory system to stochastic
resonance vibratory stimuli compared to sinus oscillations. Clinical studies found
therapeutic effects of stochastic resonance primarily in the field of neurodegenerative
disorders. Possible explanations have to do with the information selection processes.
Stichworte:
Vibration - Random Noise - Bypassing
Key words:
Vibration - random noise - bypassing
Literatur
- 1
Balkowiec A, Katz D A.
Cellular mechanisms regulating activity-dependent release of native brain-derived
neurotrophic factor from hippocampal neurons.
J Neurosc.
2002;
22
10399-10407
- 2 Bear M F, Connors B W, Paradiso M A. Neuroscience - Exploring the Brain. Baltimore:
Lippincott Williams & Wilkins; 2001
- 3
Benzi R, Sutera A, Vulpiani A.
The mechanism of stochastic resonance.
J Phys A Mathemat Gen.
1981;
14
L 453-L 457
- 4
Booth F W, Criswell D S.
Molecular events underlying Skeletal muscle atrophy and the development of effective
countermeasures.
Int J Sports Med.
1997;
18 (Suppl 4)
S 265-S 269
- 5
Chen H H, Toutelotte W G, Frank E.
Muscle Spindle-Derived Neurotrophin 3 regulates synaptic connectivity between Muscle
Sensory and Motor Neurons.
J Neurosc.
2002;
22
3512-3519
- 6
Cohen A D, Tillerson J L, Smith A D, Schallert T, Zigmond M J.
Neuroprotective effects of prior limb use in 6-hydrxydopamine-treated rats: possible
role of GDNF.
J Neurochemistry.
2003;
85
299-305
- 7
Dupont-Versteegden E E, Houle J D, Gurley C M, Peterson C A.
Early changes in muscle fiber size and gene expression in response to spinal cord
transection and exercise.
Am J Physiol Cell Physiol.
1998;
275
C 1124-C 1133
- 8
Fallon J B, Carr R W, Morgan D L.
Stochastic Resonance in Muscle Receptors.
J Neurophysiol.
2004;
91
2429-2436
- 9
Gammaitoni L, Hänggi P, Jung P, Marchesoni F.
Stochastic Resonance.
Rev Mod Physics.
1998;
1
224-287
- 10
Gómez-Pinilla F, Ying Z, Roy R R, Molteni R, Edgerton V R.
Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity.
J Neurophysiol.
2002;
88
2187-2195
- 11 Griffin M J. Handbook of human vibration. San Diego: Academic Press; 1996
- 12
Haas C T, Turbanski S, Kaiser I, Schmidtbleicher D.
Biomechanische und physiologische Effekte mechanischer Schwingungsreize beim Menschen.
Dt Zeitsch Sportmed.
2004;
2
34-43
- 13
Haas C T, Hochsprung A, Turbanski S, Brand S, Schmidtbleicher D.
Effects of whole-body-vibration in rehabilitation of spinal cord injury patients.
J Neurol.
2004;
251 (Suppl 3)
III 114, P 433
- 14 Haas C T, Turbanski S, Santarossa C, Schmidtbleicher. Zu den Effekten mechanischer
Schwingungen in der Rehabilitation von spinalen Läsionen. Publikationen zum Neuroplasticity
Kongress. 2004 (CD-ROM)
- 15 Haas C T, Turbanski S, Schwed M, Schmidtbleicher D. Neuronale Korrelate apparativ
gestützter Trainingsformen. In: Witte K, Edelmann-Nusser J, Sabo A, Moritz EF (Hrsg.):
Sporttechnologie zwischen Theorie und Praxis. Aachen: Shaker; 2006: 37-48
- 16 Haas C T, Kessler K, Turbanski S, Schmidtbleicher D. The effects of random whole-body-vibration
on symptom structure in Parkinson's disease. Neuro Rehabilitation 2006; 3 (in Druck)
- 17 Haas C T, Schmidtbleicher D. Potentials of Stochastic Resonance in Neurorehabilitation. Abstracts
of the 4th EIS Congress. 2006 (in Druck)
- 18
Halford G S, Wilson W H, Phillips S.
Processing capacity defined by relational complexity: implications for comparative,
developmental, and cognitive psychology.
Behav Brain Sci.
1998;
21 (6)
803-831
- 19
Khaodhiar L, Niemi J B, Earnest R, Lima C, Harry J D, Veves A.
Enhancing Sensation in Diabetic Neuropathic Foot with mechanical Noise.
Diabetis Care.
2003;
26
3280-3283
- 20
Liu W, Lipsitz L A, Montero-Odasso M. et al .
Noise-Enhanced Vibrotactile Sensitivity in Older Adults, Patients With Stroke, and
Patients With Diabetic Neuropathy Arch.
Phys Med Rehabil.
2002;
83
171-176
- 21
Marqueste T, Alliez J R, Alluin O, Jammes Y, Decherchi P.
Neuromuscular rehabilitation by treadmill running or electrical stimulation after
peripheral nerve injury and repair.
J Appl Physiol.
2004;
96
1988-1995
- 22
Morrissey M C, Brewster C E, Shields C L, Brown M.
The effects of electrical stimulation on the quadriceps during postoperative knee
immobilization.
Am J Sports Med.
1985;
13
40-45
- 23
Otis J S, Roy R R, Edgerton V R, Talmadge R J.
Adaptations in metabolic capacity of rat soleus after paralysis.
J Appl Physiol.
2004;
96
584-596
- 24
Roy R R, Baldwin K M, Edgerton V R.
The plasticity of skeletal muscle: effects of neuromuscular activity.
Exerc Sport Sci Rev.
1991;
19
269-312
- 25 Schmidtbleicher D, Haas C T, Turbanski S. Vibration Training in Rehabilitation. Proceedings
of the International Symposium on Biomechanics in Sports 2005: 71-79
- 26
Schuhfried O, Mittermaier C, Jovanovic T, Pieber K, Paternostro-Sluga T.
Effects of whole-body vibration in patients with multiple sclerosis: a pilot study.
Clin Rehabil.
2005;
19
834-842
- 27
Stacey W C, Durand D M.
Stochastic Resonance Improves Signal Detection in Hippocampal CA1 Neurons.
J Neurophysiol.
2000;
83
1394-1402
- 28 Tanaka S M, Alam I, Turner C H. Stochastic resonance in osteogenic response to
mechanical loading. FASEB Journal 2002 (www.fasebj.org)
- 29
Tougaard J.
Signal detection theory, detectability and stochastic resonance effects.
Biol Cybern.
2002;
87
79-90
- 30
Turbanski S, Haas C T, Schmidtbleicher D.
Effects of random whole-body-vibration on postural stability in Parkinson's disease.
Research in Sports Medicine.
2005;
13
243-257
- 31
Urbach D, Nebelung W, Röpke M, Becker R, Awiszus F.
Bilateraler Funktionsverlust der Quadrizepsmuskulatur nach einseitiger Kreuzbandruptur
mit Begleitverletzung durch zentrales Aktivierungsdefizit.
Unfallchir.
2000;
103
949-955
- 32
Ward L W, Neiman A, Moss F.
Stochastic resonance in psychophysis and in animal behavoir.
Biol Cybern.
2002;
87
91-101
- 33
Wells C, Ward L M, Chua R, Inglis J T.
Touch Noise Increases Vibrotactile Sensitivity in Old and Young.
Psychol Science.
2004;
16 (4)
313-320
- 34
Xiao J, Hu G, Liu H, Zhang Y.
Frequency sensitive stochastic resonance in periodically forced and globally coupled
systems.
Eur Phys J.
1998;
B5
133-138
Korrespondenzadresse
Dr. C. T. Haas
Institut für Sportwissenschaften · J. W. Goethe-Universität Frankfurt am Main
Ginnheimer Landstr. 39
60487 Frankfurt
Phone: 0 69/79 82 45 23
Fax: 0 69/79 82 45 74
Email: c.haas@sport.uni-frankfurt.de