Pharmacopsychiatry 2006; 39: 65-67
DOI: 10.1055/s-2006-931497
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

A Dynamical Model of Event-Related fMRI Signals in Prefrontal Cortex: Predictions for Schizophrenia

G. Deco1
  • 1Instituci'o Catalana de Recerca i Estudis Avancžats (ICREA) & Universitat Pompeu Fabra Barcelona, Spain
Further Information

Publication History

Publication Date:
01 March 2006 (online)

Two different models of the topographical and functional organization of the prefrontal cortex have been proposed: organization-by-stimulus-domain, and organization-by-process. The present work utilizes an integrate-and-fire network to model fMRI data on short term memory in order to understand data obtained in topologically different parts of the prefrontal cortex during working memory tasks. We explicitly model the mechanisms that underly working memory-related activity during the execution of delay tasks. It is shown that the effects of neuromodulation by dopamine of the synaptic processes utilized in the neurons in the model leads to experimental predictions of the effects of manipulations of dopamine on working memory.

References

  • 1 Baddeley A. Working memory. Oxford University Press New York; 1986
  • 2 Brunel N, Wang X. Effects of neuromodulation in a cortical networks model of object working memory dominated by recurrent inhibition.  Journal of Computational Neuroscience. 2001;  4 11 63-85
  • 3 Daniel D, Weinberger D, Jones D, Zigun J, Coppola R, Handel S, Bigelow L, Goldberg T, Berman K, Kleinman J. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia.  Journal of Neuroscience. 1991;  11 1907-1917
  • 4 Deco G, Zihl J. Top-down selective visual attention: a neurodynamical approach.  Visual Cognition. 2001;  8 119-140
  • 5 Deco G, Rolls E T, Horwitz B. ‘What’ and ‘where’ in visual working memory: a computational neurodynamical perspective for integrating fMRI and single-neuron data.  Journal of Cognitive Neuroscience. 2004;  16 683-701
  • 6 Egan M, Weinberg D. Neurobiology of schizophrenia.  Current Opinions in Neurobiology. 1997;  7 701-707
  • 7 Fuster J. Executive frontal functions.  Experimental Brain Research. 2000;  133 66-70
  • 8 Goldman-Rakic P. Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. in F. Plum and V. Mountcastle (eds) Handbook of Physiology-The Nervous System. American Physiological Society Bethesda, Maryland; pp. 373-417 1987
  • 9 Horwitz B, Tagamets M -A. Predicting human functional maps with neural net modeling.  Human Brain Mapping. 1999;  8 137-142
  • 10 Leung H, Gore J, Goldman-Rakic P. Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda.  Journal of Cognitive Neuroscience. 2002;  14 659-671
  • 11 Miller E K. The prefrontal cortex and cognitive control.  Nature Reviews Neuroscience. 2000;  1 59-65
  • 12 Owen A M, Herrod N J, Menon D K, Clark C J, Downey S PMJ, Carpenter T A, Minhas P S, Turkheimer F E, Williams E J, Robbins T W, Sahakian B J, Petrides M, Pickard J. Rede_ning the functional organization of working memory processes within human lateral prefrontal cortex.  European Journal of Neuroscience. 1999;  11 567-574
  • 13 Postle B R, D’Esposito M. Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI.  Psychobiology. 2000;  28 132-145
  • 14 Rao S, Rainer G, Miller E. Integration of what and where in the primate prefrontal cortex.  Science. 1997;  276 821-824
  • 15 Rolls E T, Deco G. Computational Neuroscience of Vision. Oxford University Press Oxford; 2002
  • 16 Rolls E T, Treves A. Neural Networks and Brain Function. Oxford University Press Oxford; 1998
  • 17 Williams G, Goldman-Rakic P. Modulation of memory _elds by dopamine D1 receptors in the prefrontal cortex.  Nature. 1995;  376 572-575
  • 18 Zheng P, Zhang X -X, Bunney B S, Shi W -X. Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine.  Neuroscience. 1999;  91 527-535

Gustavo Deco

Computational Neuroscience University

Passeig de Circumval.lacio 8

E-08003 Barcelona

Spain

Email: Gustavo.Deco@upf.edu

    >