Pharmacopsychiatry 2006; 39: 26-35
DOI: 10.1055/s-2006-931486
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Schizophrenia, Neurobiology and the Methodology of Systemic Modeling

F. Tretter1 , J. Scherer2
  • 1Department of Addiction, District Hospital, Haar/Munich, Germany
  • 2District Hospital, Garmisch Partenkirchen, Germany
Further Information

Publication History

Publication Date:
01 March 2006 (online)

Progress in the pharmacological treatment of schizophrenia is dependend on the extent of our understanding of the brain as the basis of this disease. Detailed examination of neurobiological data shows that only a systemic approach will integrate this wealth of information. For this reason, the steps involved in model building should be clarified, as further progress will necessitate closer cooperation between neuropsychiatrists, neurobiologists and systems scientists.

References

  • 1 Abbott L, Regehr W G. Synaptic computation.  Nature. 2004;  431(7010) 796-803
  • 2 Andreasen N C. Brave new brain. Oxford Univ. Press New York; 2004
  • 3 Benoit-Marand M, Borrelli E, Gonomn F. Inhibition of dopamine release via presynaptic D2 receptors: time course asnd functional characteristics in vivo.  J Neurosci. 2001;  21 9134-9141
  • 4 Brenner H D, Böker W. Schizophrenia as a systems disorder. BritJPsych July 1989 135(Supplement 3)
  • 5 Carlsson A. The current status of the dopamine hypothesis of schizophrenia.  Neuropsychopharmacology. 1988;  1 179-186
  • 6 Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson M L. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence.  Annu Rev Pharmacol Toxicol. 2001;  41 237-260
  • 7 Chuhma N, Zhang H, Masson J, Zhuang X, Sulzer D, Hen R. Rayport St. Dopamine Neurons Mediate a Fast Excitatory Signal via Their Glutamatergic Synapses.  J Neurosci. 2004;  24(4) 972-981
  • 8 Cohen J D, Servan-Schreiber D. A theory of dopamine function and cognitive deficits in schizophrenia.  Schizophrenia Bulletin. 1993;  19(1) 85-104
  • 9 Cooper J R, Bloom F E, Roth R H. The biochemical basis of Neuropharmacology. Oxford Univ Press New York; 2003
  • 10 Cragg S J, Rice M E. DAncing past the DAT at a DA synapse.  Trends in Neurosciences. 2004;  27 270-277
  • 11 Dayan P, Abott L F. Theoretical Neuroscience Computational and Mathematical Modeling of Neural Systems. Cambridge; MIT Press 2005
  • 12 Dym C L. Principles of mathematical modeling. Elsevier San Diego; 2004
  • 13 Floresco S B, West A R, Ash B, Moore H, Grace A A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission.  Nat Neurosci. 2003;  6(9) 968-973
  • 14 Forrester J W. Urban dynamics. MIT Press Cambrdige (Mass.); 1961
  • 15 Gao W -J, Goldman-Rakic P S. Selective modulation of excitatory and inhibitory microcircuits by dopamine.  PNAS. 2003;  100(5) 2836-2841
  • 16 Goldman-Rakic P S. The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia.  BiolPsyc. 1999;  46(5) 650-661
  • 17 Grace A A, Bunney B S. Electrophysiological Properties of Midbrain Dopamine Neurons: Psychopharmacology - The Fourth Generation of Progress. Neuropsychopharmacology Journal 2000
  • 18 Haken H. Brain dynamics. Springer Berlin; 2002
  • 19 Hannon B, Ruth M. Modeling dynamic biological systems. Springer New York; 1997
  • 20 Hannon B, Ruth M. Dynamic modeling. Springer Berlin; 2001
  • 21 Hernandez-Lopez S, Bargas J, Surmeier D J, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance.  J Neurosci. 1997;  17 3334-3342
  • 22 Kupper Z. Tschacher W.  Symptom trajectories in psyschotic episodes.Comprehens psych. 2002;  43(4) 311-318
  • 23 Lawin A, Nogueira L, Lapish C C, Wightman R M, Phillips P EM, Seamans J K. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling.  J Neurosci. 2005;  25(20) 5013-5023
  • 24 Lewis D A, Pierri J N, Volk D W, Melchitzky D S, Woo T -UW. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia.  Biol Psych. 1999;  46 616-626
  • 25 Mackey M C, an der Heiden U. The dynamics of recurrent inhibiton.  J Math Biol. 1984;  19 211-225
  • 26 Mainzer K. Thinking in Complexity. The Computational Dynamics of Matter, Mind, and Mankind. Springer New York; 4th edition 2004
  • 27 Meadows D H, Meadows D L, Randers J, Behrens W W. Beyond the limits to Growth. Washington; Potomac Ass 1972
  • 28 Meinhardt H. The Virtual Laboratory: The Algorithmic Beauty of Sea Shells. Springer Verlag Berlin; 1995
  • 29 Moore H, West A R, Grace A A. The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology.  Biol Psych. 1999;  46 40-55
  • 30 Müller C, Ciompi L. The relationship between anamnestic factors and the course of schizophrenia.  Compr Psychiatry. 1976;  17(3) 387-393
  • 31 Murray J D. Mathematical Biology. Springer New York; 2002
  • 32 Ossimitz G. Entwicklung des systemischen Denkens. Profil München; 2000
  • 33 Richmond B. An introduction to systems thinking. High Performance Systems Hanover/USA; 2001
  • 34 Roth B L, Sheffler D J, Kroeze W K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia.  Nat Rev Drug Discov. 2004;  3 353-359
  • 35 Schiepek G, Schoppek W, Tretter F. Synergetics in psychiatry - simulation of evolutionary patterns of schizophrenia on the basis of nonlinear difference equations. In: Tschacher, W., Schiepek, G., Brunner, E.J. (Hrsg) Self organization and clinical psychology. Springer Berlin; 1992: S. 163-194
  • 36 Schmitz Y, Schmauss C, Sulzer D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors.  J Neurosci. 2002;  22(18) 8002-8009
  • 37 Seamans J K, Yang C R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.  Prog Neurobiol. 2004 Sep;  74(1) 1-58
  • 38 Seamans J K, Gorelova N, Durstewitz D, Yang C R. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons.  J Neurosci. 2001;  21(10) 3628-3638
  • 39 Seeman P. Atypical antipsychotics: mechanism of action.  Can J Psychiatry. 2002 Feb;  47(1) 27-38
  • 40 Seeman P. An update of fast-off dopamine d2 atypical antipsychotics.  Am J Psychiatry. 2005 Oct;  162(10) 1984-1985
  • 41 Spitzer M. The mind within the net. MIT Press Cambridge, Mass; 1999
  • 42 Sterman J. Bussiness dynamics. McGraw Hill New York; 2000
  • 43 Trantham-Davidson H, Neely L C, Seamans J K. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex.  J Neurosci. 2004;  24(47) 10 652-10 659
  • 44 Tretter F. Perspektiven der mathematischen Systemtheorie in der biologischen Psychiatrie.  Krankenhauspsychiatrie. 2004;  15 77-84
  • 45 Tretter F. Systemtheorie im klinischen Kontext. Pabst Lengerich; 2005
  • 46 Wang Y, Goldman-Rakic P S. D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons.  PNAS. 2004 April 6;  101(14) 5093-5098
  • 47 Zeigler B P. Theory of Modeling and Simulation. Academic New York; 2000

PD Dr. Dr. Dr. Felix Tretter

Department of Addiction

District Hospital

Ringstr. 9

D-85529 Haar/Munich

Germany

Email: tretter@krankenhaus-haar.de

    >