Subscribe to RSS
DOI: 10.1055/s-2006-927362
© Georg Thieme Verlag KG Stuttgart · New York
Zerebrale Bildgebung bei Morbus Wilson
Cerebral Imaging for Wilson DiseasePublication History
eingereicht: 4.8.2006
angenommen: 30.11.2006
Publication Date:
15 February 2007 (online)

Zusammenfassung
Dem Morbus Wilson liegt eine autosomal rezessiv vererbte Kupferstoffwechselstörung zugrunde, welche mit einer gestörten biliären Kupferexkretion und einem erhöhten freien Serumkupferspiegel einhergeht. Dieses führt zu einer toxischen Kupferakkumulation in Geweben, insbesondere in der Leber und im Gehirn. Klinisch überwiegt daher eine hepatische und/oder extrapyramidale Symptomatik. Unbehandelt führt die Erkrankung zum Tod. Zerebrale Veränderungen sind am sensitivsten mit der Magnetresonanztomografie nachweisbar. Pathologische Befunde betreffen schwerpunktmäßig die Basalganglien, das Mittelhirn und den Hirnstamm. Je nach Therapieverlauf und Schweregrad der neurologischen Symptomatik zeigen sich sowohl Signalanhebungen als auch Signalabsenkungen in T1-gewichteten (T1w) und T2-gewichteten (T2w) Bildern, welche unter einer suffizienten Therapie reversibel sein können. Hyperintense Areale in T2w-Bildern sind durch eine Ödembildung, Gliose, Demyelinisierung oder einer zystischen Degeneration hervorgerufen. Signalanhebungen in T1w-Bildern finden sich bei Patienten mit hepatischer Insuffizienz und unterliegen vermutlich Manganablagerungen. Hypointensitäten in T2w-Bildern werden vermutlich durch den paramagnetischen Effekt der Kupferakkumulation verursacht. Neuere Untersuchungen zeigen außerdem eine Korrelation zwischen dem klinischen Schweregrad und Veränderungen in diffusionsgewichteten Sequenzen. Obwohl bildgebende Verfahren in der primären Diagnostik eines M. Wilson eine eher untergeordnete Rolle spielen, müssen die genannten, zerebralen Veränderungen insbesondere bei Patienten mit extrapyramidalen Störungen differenzialdiagnostisch an einen M. Wilson denken lassen. MR-Verlaufsbeobachtungen können ein Baustein der Therapiekontrolle sein, da ein Persistieren bzw. eine Progredienz hyperintenser Signale in T2w-Bildern ein Therapieversagen reflektiert.
Abstract
Wilson disease is an autosomal recessive inherited copper metabolic disorder that is characterized by diminished biliary excretion of copper and a raised serum level of free copper. This leads to a toxic copper accumulation, particularly in the liver and the brain. Therefore, clinical symptoms are dominated by hepatic and extrapyramidal symptoms. Untreated Wilson disease has an unfavorable outcome. Cerebral changes are depicted most sensitively by magnetic resonance tomography. Pathological findings mainly focus on the basal ganglia, the midbrain and the brainstem. Depending on the therapy and the severity of the neurological symptoms, signal increase as well as signal decrease may be observed in T1-weighted (T1w) and T2-weighted (T2w) images and can be reversible when using an appropriate therapy. Hyperintense areas in T2-weighted images are induced by edema, gliosis, demyelinisation or cystic degeneration. Signal increase in T1-weighted images are found in patients with hepatic insufficiency and are probably due to manganese deposits. Signal decrease in T2-weighted images is probably caused by the paramagnetic effect of the copper accumulation. Furthermore, recent studies show a correlation between the clinical severity and changes in diffusion-weighted sequences. Although cross-section imaging plays a rather subordinate role in the primary diagnostics of Wilson disease, the described cerebral changes in patients with extrapyramidal disturbances should include Wilson disease in the differential. Persistent or progressive hyperintense lesions in T2-weighted images reflect therapy failure, and clinical recovery correlates to an improvement in MR images. Therefore, repeat MR imaging can be used to monitor medical therapy.
Key words
manganese - brain - basal ganglia - CT - MR imaging
Literatur
- 1
Westphal C.
Über eine dem Bilde der cerebrospinalen grauen Degeneration ähnlichen Erkrankung des
zentralen Nervensystems ohne anatomischen Befund, nebst einigen Bemerkungen über paradoxe
Kontraktionen.
Arch Psychiatr Nervenk.
1883;
14
87-134
MissingFormLabel
- 2
Wilson S AK.
Progressive lenticular degeneration. A familial nervous disease associated with cirrhosis
of the liver.
Brain.
1912;
34
295-509
MissingFormLabel
- 3 Hall H C. La degénérescence hépato-lenticulaire. Maladie de Wilson-Pseudosclérose Paris; Masson et Cie 1921: 361
MissingFormLabel
- 4
Cumings J N.
The copper and iron content of brain and liver in the normal and in hepato-lenticular
degeneration.
Brain.
1948;
71
410-415
MissingFormLabel
- 5
Scheinberg I H, Gitlin D.
Deficiency of ceruloplasmin in patients with hepatolenticular degeneration (Wilson’s
disease).
Science.
1952;
116
484-485
MissingFormLabel
- 6
Bush J A, Mahoney J P, Markowitz H. et al .
Studies on copper metabolism. XVI. Radioactive copper studies in normal subjects and
in patients with hepatolenticular degeneration.
J Clin Invest.
1955;
34
1766-1768
MissingFormLabel
- 7
Frydman F, Bonné-Tamir B, Farrer A. et al .
Assignment of the gene for Wilson’s disease to chromosome 13: Linkage to the esterase
D locus.
Proc Natl Acad Sci USA.
1985;
82
1819-1821
MissingFormLabel
- 8
Bull P C, Cox D W.
Long range restriction mapping of 13q14.3 focused on the Wilson disease region.
Genomics.
1993;
16
593-598
MissingFormLabel
- 9
Bull P C, Thomas G R, Rommens J M. et al .
The Wilson disease gene is a putative copper transporting P-type ATPase similar to
the Menkes gene.
Nature Genet.
1993;
5
327-337
MissingFormLabel
- 10 Scheinberg I H, Sternlieb I. Wilson’s disease. Philadelphia; WB Saunders 1984
MissingFormLabel
- 11
Gollan J L, Gollan T J.
Wilson disease in 1998: genetic diagnostic and therapeutic aspects.
J Hepatol.
1998;
28
28-36
MissingFormLabel
- 12
Roberts E A, Cox D W.
Wilson disease.
Bailliere’s Clinical Gastroenterology.
1998;
12
237-256
MissingFormLabel
- 13
Caca K, Ferenci P, Kühn H J. et al .
High prevalence of the H106Q mutation in East German patients with Wilson disease:
rapid detection of mutations by limited sequencing and phenotype-genotype analysis.
J Hepatol.
2001;
35
575-581
MissingFormLabel
- 14
Hefter H, Arendt G, Stremmel W. et al .
Quantitative measurements of motor impairment in Wilson’s disease I: slowness of voluntary
limb movements.
Acta Neurol Scand.
1993;
87
133-147
MissingFormLabel
- 15
Yarze J C, Martin P, Munoz S J. et al .
Wilson’s disease: Current status.
Am J Med.
1992;
92
643-654
MissingFormLabel
- 16
Medalia A, Isaacs-Glabermann K, Scheinberg H.
Neuropsychological impairment in Wilson’s disease.
Arch Neurol.
1988;
45
502-504
MissingFormLabel
- 17
Hefter H.
Wilson’s disease: Review of pathophysiology, clinical features and drug treatment.
CNS Drugs.
1994;
2
26-39
MissingFormLabel
- 18
Starosta-Rubinstein S, Young A B, Kluin K. et al .
Clinical assessment of 31 patients with Wilson’s disease. Correlation with structural
changes on magnetic resonance imaging.
Arch Neurol.
1987;
44
365-370
MissingFormLabel
- 19
Hitoshi S, Iwata M, Yoshikawa K.
Mid-brain pathology of Wilson’s disease: MRI analysis of three cases.
J Neurol Neurosurg Psychiatry.
1991;
54
624-626
MissingFormLabel
- 20
Imiya M, Ichikawa K, Matsushima H. et al .
MR of the base of the pons in Wilson’s disease.
AJNR Am J Neuroradiol.
1992;
13
1009-1012
MissingFormLabel
- 21
Thoumas K A, Aquilonius S M, Bergström K. et al .
Magnetic resonance imaging of the brain in Wilson’s disease.
Neuroradiology.
1993;
35
134-141
MissingFormLabel
- 22
King A D, Walshe J M, Kendall B E. et al .
Cranial MR imaging in Wilson’s disease.
AJR Am J Roentgenol.
1996;
167
1579-1584
MissingFormLabel
- 23
H N van Wassenaer Hall, Van den Heuvel A G, Algra A. et al .
Wilson Disease: Findings at MR imaging and CT of the brain with clinical correlation.
Radiology.
1996;
198
531-536
MissingFormLabel
- 24
Anzil A P, Herrlinger H, Blinzinger K. et al .
Ultrastructure of brain and nerve biopsy tissue in Wilson disease.
Arch Neurol.
1974;
31
94-100
MissingFormLabel
- 25 Duchen L W, Jacobs J M. Familial hepatolenticular degeneration (Wilson’s disease). Corsellis JAN, Adams JH Neuropathology London; Arnold 1984: 595-599
MissingFormLabel
- 26 Goebel H H, Zur P H. Central pontine myelinolysis. Vinken PJ, Bruyn GW Handbook of clinical neurology Amsterdam; North-Holland Publishing Co 1976 28: 285-316
MissingFormLabel
- 27
Hermann W, Günther P, Hahn S. et al .
Zerebrales MRT und evozierte Potenziale bei Morbus Wilson.
Nervenarzt.
2002;
73
349-354
MissingFormLabel
- 28
Mochizuki H, Kamakura K, Masaki T. et al .
Atypical MRI features of Wilson’s disease: high signal in globus pallidus on T1-weighted
imaging.
Neuroradiology.
1997;
39
171-174
MissingFormLabel
- 29
Kim T J, Kim I O, Kim W S. et al .
MR Imaging of the brain in Wilson disease of childhood: Findings before and after
treatment with clinical correlation.
AJNR Am J Neuroradiol.
2006;
27
1373-1378
MissingFormLabel
- 30
Kozic D, Svetel M, Petrovic B. et al .
MR imaging of the brain in patients with hepatic form of Wilson disease.
Eur J Neurol.
2003;
10
587-592
MissingFormLabel
- 31
Sener R N.
MR imaging of Wilson’s disease: Contrast enhancement of the cerebral cortex and corticomedullary
junction.
Comput Med Imag Graph.
1997;
21
195-200
MissingFormLabel
- 32
Sener R N.
Wilson’s disease: Contrast enhancement of cerebral lesions on MR images after penicillamine
therapy.
AJR Am J Roentgenol.
1994;
163
228
MissingFormLabel
- 33
Alanen A, Komu M, Penttinen M. et al .
Magnetic resonance imaging and proton MR spectroscopy in Wilson’s disease.
Br J Radiol.
1999;
72
749-756
MissingFormLabel
- 34
Liebeskind D S, Wong S, Hamilton R H.
Faces of the giant panda and her cub: MRI correlates of Wilson’s disease.
J Neurol Neurosurg Psychiatry.
2003;
74
682
MissingFormLabel
- 35
Jacobs D A, Markowitz C E, Liebeskind D S. et al .
The „double Panda sign” in Wilson’s disease.
Neurology.
2003;
61
969
MissingFormLabel
- 36
Schild H.
Klinische Hochfeld-MRT.
Fortschr Röntgenstr.
2005;
177
621-631
MissingFormLabel
- 37
Roh J K, Lee T G, Wie B A. et al .
Initial follow up brain MRI findings and correlation with the clinical course in Wilson’s
disease.
Neurology.
1984;
44
1064-1068
MissingFormLabel
- 38
Favrole P, Chabriat H, Guichard J P. et al .
Clinical correlates of cerebral water diffusion in Wilson disease.
Neurology.
2006;
66
384-389
MissingFormLabel
- 39
Sener R N.
Diffusion MR imaging changes associated with Wilson disease.
AJNR Am J Neuroradiol.
2003;
24
965-967
MissingFormLabel
- 40
Page R A, Davie C A, MacManus D. et al .
Clinical correaltion of brain MRI and MRS abnormalities in patients with Wilson disease.
Neurology.
2004;
63
638-643
MissingFormLabel
- 41
Juan C J, Chen C Y, Liu Y J. et al .
Acute putaminal necrosis and white matter demyelination in a child with subnormal
copper metabolism in Wilson disease: MR imaging and spectroscopic findings.
Neuroradiology.
2005;
47
401-405
MissingFormLabel
- 42
Pujol A, Pujol J, Graus F. et al .
Hyperintense globus pallidus on T1-weighted MRI in cirrhotic patients is associated
with severity of liver failure.
Neurology.
1993;
43
65-69
MissingFormLabel
- 43
Inoue E, Hori S, Narumi Y. et al .
Portal-systemic encephalopathy: presence of basal ganglia lesions with high signal
intensity on MR images.
Radiology.
1991;
179
551-555
MissingFormLabel
- 44
Butterworth R F.
Complications of cirrhosis. III. Hepatic encephalopathy.
J Hepatol.
2000;
32
171-180
MissingFormLabel
- 45
G Pomier Layrargues, Spahr L, Butterworth R F.
Increased manganese concentrations in pallidum of cirrhotic patients.
Lancet.
1995;
345
735
MissingFormLabel
- 46
Semnic R, Svetel M, Dragasevic N. et al .
Magnetic resonance imaging morphometry of the midbrain in patients with Wilson disease.
J Comput Assist Tomogr.
2005;
29
880-883
MissingFormLabel
- 47
Selwa L M, Vanderzant C W, Brunberg J A. et al .
Correlation of evoked potentials and MRI findings in Wilson’s disease.
Neurology.
1993;
43
2059-2064
MissingFormLabel
- 48
Schlaug G, Hefter H, Engelbrecht V. et al .
Neurological impairment and recovery in Wilson’s disease: evidence from PET and MRI.
J Neurol Sci.
1996;
136
129-139
MissingFormLabel
- 49
Oder W, Prayer L, Grimm G. et al .
Wilson’s disease: evidence of subgroups derived from clinical findings and brain lesion.
Neurology.
1993;
43
120-124
MissingFormLabel
- 50
Südmeyer M, Saleh A, Wojtecki L. et al .
Wilson’s disease tremor is associated with MRI lesions in basal ganglia structures.
Mov Disord.
2006;
Epub ahead of print
MissingFormLabel
- 51
Huang C C, Chu N S.
Acute dystonia with thalamic and brainstem lesion after initial Penicillamine treatment
in Wilson’s disease.
Eur Neurol.
1998;
39
32-37
MissingFormLabel
- 52
Genovese E, Maghnie M, Maggiore G. et al .
MR imaging of CNS involvement in children affected by chronic liver disease.
AJNR Am J Neuroradiol.
2000;
21
845-851
MissingFormLabel
- 53
Grisoli M, Piperno A, Chiapparini L. et al .
MR Imaging of cerebral cortical involvement in Aceruloplasminemia.
AJNR Am J Neuroradiol.
2005;
26
657-661
MissingFormLabel
- 54
Saha M, Kumar S, Das A. et al .
Similarities and differences of MR findings between Japanese encephalitis and Wilson’s
disease.
Eur Radiol.
2002;
12
872-876
MissingFormLabel
- 55
Engelbrecht V, Schlaug G, Hefter H. et al .
MRI of the Brain in Wilson Disease: T2 signal loss under therapy.
J Comput Assist Tomogr.
1995;
19
635-638
MissingFormLabel
- 56
Zagami S, Boers P M.
Disappearing face of the giant panda.
Neurology.
2001;
56
665
MissingFormLabel
- 57
Wu J C, Huang C C, Jeng L B. et al .
Correlation of neurological manifestations and MR images in a patient with Wilson’s
disease after liver transplantation.
Acta Neurol Scand.
2000;
102
135-139
MissingFormLabel
- 58
Stehling C, Niederstadt T, Krämer S. et al .
Vergleich einer T1-gewichteten Inversion-Recovery-, Gradienten-Echo- und Spin-Echo-Sequenz
zur zerebralen Bildgebung bei 3,0 Tesla.
Fortschr Röntgenstr.
2005;
177
536-542
MissingFormLabel
Dr. Kjel Andersen
Institut für Diagnostische Radiologie, Universitätsklinikum Düsseldorf
Moorenstr. 5
40225 Düsseldorf
Phone: + 49/2 11/8 11 77 52
Fax: + 49/2 11/8 11 94 87
Email: kjel_andersen@web.de