References and Notes
<A NAME="RG38005ST-1">1</A> Review on coccinellids:
King AG.
Meinwald J.
Chem. Rev.
1996,
96:
1105
<A NAME="RG38005ST-2A">2a</A>
Laurent P.
Braekman J.-C.
Daloze D.
Eur. J. Org. Chem.
2000,
2057
<A NAME="RG38005ST-2B">2b</A>
Braekman J.-C.
Chaelier A.
Daloze D.
Heilporn S.
Pasteels J.
Plasman V.
Wang S.
Eur. J. Org. Chem.
1999,
1749
<A NAME="RG38005ST-3">3</A> Review on CN(R,S) method:
Husson H.-P.
Royer J.
Chem. Soc. Rev.
1999,
28:
393
<A NAME="RG38005ST-4A">4a</A>
Gebauer J.
Blechert S.
Synlett
2005,
2826
<A NAME="RG38005ST-4B">4b</A>
Gebauer J.
Dewi P.
Blechert S.
Tetrahedron Lett.
2005,
46:
43
<A NAME="RG38005ST-4C">4c</A>
Randl S.
Blechert S.
Tetrahedron Lett.
2004,
45:
1167
<A NAME="RG38005ST-5A">5a</A>
Zibuck R.
Streiber J.
Org. Synth.
1993,
71:
236
<A NAME="RG38005ST-5B">5b</A>
Zibuck R.
Streiber JM.
J. Org. Chem.
1989,
54:
4717
<A NAME="RG38005ST-6">6</A>
Jadhav PK.
Bhat KS.
Perumal PT.
Brown HC.
J. Org. Chem.
1986,
51:
432
<A NAME="RG38005ST-7A">7a</A>
Costa AL.
Piazza MG.
Tagliavini E.
Trombini C.
Umani-Ronchi A.
J. Am. Chem. Soc.
1993,
115:
7001
<A NAME="RG38005ST-7B">7b</A> A similar method with a different titanium complex:
Hanawa H.
Hashimoto T.
Maruoka K.
J. Am. Chem. Soc.
2003,
125:
1708
<A NAME="RG38005ST-8A">8a</A>
Fürstner A.
Thiel OR.
Kindler N.
Bartkowska B.
J. Org. Chem.
2000,
65:
7990
<A NAME="RG38005ST-8B">8b</A>
Fürstner A.
Konetzki I.
J. Org. Chem.
1998,
63:
3072
<A NAME="RG38005ST-9">9</A>
Nakayama Y.
Kumar GB.
Kobayashi Y.
J. Org. Chem.
2000,
65:
707
<A NAME="RG38005ST-10">10</A>
The optical rotation of the product [α]D
20 +8.7 (c 1.4, CHCl3) was in agreement with the reported value {lit.11 [α]D
25 +8.3 (c 1.4, CHCl3)}.
<A NAME="RG38005ST-11">11</A>
Ito T.
Yamakawa I.
Okamoto S.
Kobayashi Y.
Sato F.
Tetrahedron Lett.
1991,
32:
371
<A NAME="RG38005ST-12A">12a</A>
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
<A NAME="RG38005ST-12B">12b</A>
Gessler S.
Randl S.
Blechert S.
Tetrahedron Lett.
2000,
41:
9973
<A NAME="RG38005ST-13">13</A>
Preparation and Selected Data of Enone 2.
[Ru] (11 mg, 18 µmol) was added to a solution of homoallylamine 4 (76 mg, 0.2 mmol) and enone ester 3 (60 mg, 0.4 mmol) in anhyd CH2Cl2 (4.7 mL) under a nitrogen atmosphere. The mixture was heated at reflux for 20 h.
The solvent was evaporated and the residue was purified by column chromatography (SiO2, cyclohexane-EtOAc 3:2) to give 2 (70 mg, 70%, as keto-enol mixture) as a brown oil. [α]D
20 -8.0 (c 1, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.81 (br s, 3 H, H-12), 1.20 (br s, 8 H, H-9-11), 1.45-1.59 (m, 2 H, H-8),
2.20-2.68 (m, 2 H, H-6), 3.29 (br s, 2 H, H-13), 3.45 (s, H-2 keto), 3.50 (br s, 2
H, H-14), 3.68, 3.70 (s, 3 H, OCH
3), 4.05 (br s, 1 H, H-7), 4.96 (s, H-2 enol), 5.12 (s, 2 H, H-16), 5.69-5.85 and 6.05-6.20
(m, 1 H, H-4), 6.45-6.62 and 6.69-6.86 (m, 1 H, H-5), 7.21-7.41 (br s, 5 H, Ar), 11.75
(s, OH enol) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.0 (C-12), 22.6 (C-11), 26.1 (C-10), 31.6 (C-9), 33.1, 33.4 (C-8), 36.5,
37.0 (C-6), 46.4, 46.7 (C-13), 51.3 (C-7), 52.4 (OMe), 61.6, 62.6 (C-14), 67.2, 67.8
(C-15), 90.5 (C-2), 126.6 (C-4), 1276.9, 128.1, 128.3, 128.7, 131.3, 136.8 (Ar), 145.9,
147.0 (C-5), 155.6 (C-16), 173.3 (C-1), 191.7 (C-3) ppm.
<A NAME="RG38005ST-14">14</A>
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
<A NAME="RG38005ST-15">15</A>
Hattori K.
Sajiki H.
Hirota K.
Tetrahedron
2000,
56:
8433
<A NAME="RG38005ST-16">16</A>
Maki S.
Okawa M.
Makii T.
Hirano T.
Niwa H.
Tetrahedron Lett.
2003,
44:
3717
<A NAME="RG38005ST-17">17</A>
Gómez-Monterrey I.
González-Muñiz R.
Herranz R.
Garcia-Gomez T.
Tetrahedron Lett.
1993,
34:
3593
<A NAME="RG38005ST-18">18</A>
Preparation and Selected Data of Piperidine 1.
Cross-metathesis product 2 (270 mg, 0.64 mmol) in isopropyl ether (20 mL) was hydrogenated over 10% Pd/C (68
mg, 60 µmol) at 3 bar and 40 °C for 3 d. After filtration over Celite® and evaporation, the residue was purified by column chromatography (SiO2, CH2Cl2-MeOH-NH3 97:3:0.1) to afford piperidine 1 (105 mg, 61%) and calvine (20 mg, 13%) as a light-yellow oil. [α]D
20 +8.5 (c 1.3, CH2Cl2). 1H NMR (200 MHz, CDCl3): δ = 0.88 (t, J = 7 Hz, 3 H, H-13), 1.10-1.80 (m, 14 H, H-3-5,9-12), 2.39 (dd, J = 15, 9 Hz, 1 H, H-7), 2.51-2.77 (m, 4 H, H-6,7,14), 3.09-3.25 (m, 1 H, H-2), 3.46
(t, J = 6 Hz, 2 H, H-15), 3.68 (s, 3 H, OCH
3) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.1 (C-13), 21.7 (C-4), 22.7 (C-12), 26.2 (C-3), 27.0 (C-10), 27.3 (C-5),
32.1 (C-11), 34.1 (C-9), 39.3 (C-7), 48.4 (C-14), 51.7 (OMe), 58.3 (C-2), 60.5 (C-15),
61.9 (C-6), 173.0 (C-8) ppm.
<A NAME="RG38005ST-19">19</A>
Nilov D.
Räcker R.
Reiser O.
Synthesis
2002,
2232
<A NAME="RG38005ST-20">20</A>
Preparation and Selected Data of (+)-Calvine.
To a solution of 1 (12 mg, 44 µmol) in benzene (3 mL), p-TSA monohydrate (9.2 mg, 48 µmol) was added and the mixture was heated at reflux
under a nitrogen atmosphere for 18 h. Then, CH2Cl2 (10 mL) and sat. aq NaHCO3 solution (10 mL) were added and the layers were separated. The aqueous layer was
extracted with CH2Cl2 (3 × 10 mL), and the collected organic layers were evaporated to give neat calvine
(7 mg, 66%) as a light-yellow oil. [α]D
20 +18.3 (c 0.35, CH2Cl2) {lit.2 [α]D
20 +18 (c 0.66, CH2Cl2)}. 1H NMR (200 MHz, CDCl3): δ = 0.88 (t, J = 7 Hz, 3 H, H-13), 1.15-1.81 (m, 14 H, H-3-5,9-12), 2.19-2.89 (m, 5 H, H-6,7,14),
3.23-3.37 (m, 1 H, H-2), 4.21-4.36 (m, 2 H, H-15) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.1 (C-13), 21.5 (C-4), 22.7 (C-12), 24.6 (C-3), 25.2 (C-5), 32.3 (C-10, 11),
34.2 (C-9), 43.2 (C-7), 53.5 (C-14), 59.0 (C-2), 62.8 (C-6), 69.0 (C-15), 174.7 (C-8)
ppm.