Plant Biol (Stuttg) 2007; 9(2): 342-355
DOI: 10.1055/s-2006-924760
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Effects of Elevated Atmospheric CO2 and/or O3 on Intra- and Interspecific Competitive Ability of Aspen

M. E. Kubiske1 , V. S. Quinn1 , P. E. Marquardt1 , D. F. Karnosky2
  • 1USDA Forest Service, Forestry Sciences Laboratory, 5985 Hwy. K, Rhinelander, WI 54501, USA
  • 2School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
Further Information

Publication History

Received: February 28, 2006

Accepted: October 23, 2006

Publication Date:
19 January 2007 (online)

Abstract

Three model communities of trembling aspen (monoculture, and mixed with either paper birch or sugar maple) were grown for seven years in elevated atmospheric CO2 and O3 using Free Air CO2 Enrichment (FACE) technology. We utilized trends in species' importance, calculated as an index of volume growth and survival, as indications of shifting community composition. For the pure aspen communities, different clones emerged as having the highest change in relative importance values depending on the pollutant exposure. In the control and elevated CO2 treatments, clone 42E was rapidly becoming the most successful clone while under elevated O3, clone 8 L emerged as the dominant clone. In fact, growth of clone 8 L was greater in the elevated O3 treatment compared to controls. For the mixed aspen-birch community, importance of aspen and birch changed by - 16 % and + 62 %, respectively, in the controls. In the treatments, however, importance of aspen and birch changed by - 27 % and + 87 %, respectively, in elevated O3, and by - 10 % and + 45 %, respectively, in elevated CO2. Thus, the presence of elevated O3 hastened conversion of stands to paper birch, whereas the presence of elevated CO2 delayed it. Relative importance of aspen and maple changed by - 2 % and + 3 %, respectively, after seven years in the control treatments. But in elevated O3, relative importance of aspen and maple changed by - 2 % and + 5 %, respectively, and in elevated CO2 by + 9 and - 20 %, respectively. Thus, elevated O3 slightly increases the rate of conversion of aspen stands to sugar maple, but maple is placed at a competitive disadvantage to aspen under elevated CO2.

References

  • 1 Arbaugh M., Bytnerowicz A., Grulke N., Fenn M., Poth M., Temple P., Miller P.. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.  Environmental International. (2003);  29 401-406
  • 2 Bauer G. A., Berntson G. M., Bazzaz F. A.. Regenerating temperate forests under elevated CO2 and nitrogen deposition: comparing biochemical and stomatal limitation of photosynthesis.  New Phytologist. (2001);  152 249-266
  • 3 Bazzaz F. A., McConnaughay K. D. M.. Plant-plant interactions in elevated CO2 environments.  Australian Journal of Botany. (1992);  40 547-563
  • 4 Berrang P. C., Karnosky D. F., Mickler R. A., Bennett J. P.. Natural selection for ozone tolerance in Populus tremuloides. .  Canadian Journal of Forest Research. (1986);  16 1214-1216
  • 5 Berrang P. C., Karnosky D. F., Bennett J. P.. Natural selection for ozone tolerance in Populus tremuloides. II. Field verification.  Canadian Journal of Forest Research. (1989);  19 519-522
  • 6 Berrang P. C., Karnosky D. F., Bennett J. P.. Natural selection for ozone tolerance in Populus tremuloides: an evaluation of nationwide trends.  Canadian Journal of Forest Research. (1991);  21 1091-1097
  • 7 Brasseur G. P., Müller J.-F., Tie X. X., Horowitz L.. Tropospheric ozone and climate: Past, present and future. Matsuno, T. and Kida, H., eds. Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling. Tokyo; Terrapub (2001): 63-75
  • 8 Catovsky S., Bazzaz F. A.. Elevated CO2 influences the responses of two birch species to soil moisture: implications for forest community structure.  Global Change Biology. (1999);  5 507-518
  • 9 Dickson R. E., Lewin K. F., Isebrands J. G., Coleman M. D., Heilman W. E., Riemenschneider D. E., Sober J., Host G. E., Zak D. F., Hendrey G. R., Pregitzer K. S., Karnosky D. F.. Forest atmosphere carbon transfer storage-II (FACTS II) - the aspen free-air CO2 and O3 enrichment (FACE) project: an overview. USDA Forest Service North Central Research Station. General Tech. Rep. NC‐214, pp. 68. (2000)
  • 10 Dijkstra P., Hymus G., Colavito D., Vieglais D. A., Cundari C. M., Johnson D. P., Hungate B. A., Hinkle C. R., Drake B. G.. Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem.  Global Change Biology. (2002);  8 90-103
  • 11 Fowler D., Cape J. N., Coyle M., Flechard C., Kuylenstierna J., Hicks K., Derwent D., Johnson C., Stevenson D.. The global exposure of forests to air pollutants.  Water, Air, and Soil Pollution. (1999);  116 5-32
  • 12 Grams T. E. E., Kozovits A. R., Reiter I. M., Winkler J. B., Sommerkorn M., Blaschke H., Haberle K.-H., Matyssek R.. Quantifying competitiveness in woody plants.  Plant Biology. (2002);  4 153-158
  • 13 Hendrey G. R., Ellsworth D. S., Lewin K. F.. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2.  Global Change Biology. (1999);  5 293-309
  • 14 Holton M. K., Lindroth R. L., Nordheim E. V.. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and genotype.  Oecologia. (2003);  137 233-244
  • 15 IPCC .A report of working group I of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/ (2001)
  • 16 Isebrands J. G., McDonald E. P., Kruger E., Hendrey G., Pregitzer K., Percy K., Sober J., Karnosky D. F.. Growth responses of Populus tremuloides clones to interacting carbon dioxide and tropospheric ozone.  Environmental Pollution. (2001);  115 359-371
  • 17 Karnosky D. F.. Changes in eastern white pine stands related to air pollution stress.  Mitteilungen der Forstlichen Bundesversuchsanstalt Wien. (1981);  137 41-45
  • 18 Karnosky D. F.. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps.  Environment International. (2003);  29 161-169
  • 19 Karnosky D. F., Gagnon Z. E., Dickson R. E., Coleman M. D., Lee E. H., Isebrands J. G.. Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings.  Canadian Journal of Forest Research. (1996);  26 23-37
  • 20 Karnosky D. F., Percy K. E., Xiang B., Callan B., Noormets A., Mankovska B., Hopkin A., Sober J., Jones W., Dickson R. E., Isebrands J. G.. Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae).  Global Change Biology. (2002);  8 329-338
  • 21 Karnosky D. F., Zak D. R., Pregitzer K. S., Awmack C. S., Bockheim J. G., Dickson R. E., Hendrey G. R., Host G. E., King J. S., Kopper B. J., Kruger E. L., Kubiske M. E., Lindroth R. L., Mattson W. J., McDonald E. P., Noormets A., Oksanen E., Parsons W. F. J., Percy K. E., Podila G. K., Riemenschneider D. E., Sharma P., Thakur R. C., Sober A., Sober J., Jones W. S., Anttonen S., Vapaavuori E., Mankovska B., Heilman W. E., Isebrands J. G.. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project.  Functional Ecology. (2003 a);  17 289-304
  • 22 Karnosky D. F., Percy K., Mankovska B., Prichard T., Noormets A., Dickson R. E., Jepsen E., Isebrands J. G.. Ozone affects the fitness of trembling aspen. Karnosky, D. F., Percy, K. E., Chappelka, A. H., Simpson, C., and Pikkarainen J. M., eds. Air Pollution, Global Change and Forests in the New Millennium. Oxford; Elsevier Press (2003 b): 199-209
  • 23 Karnosky D. F., Pregitzer K. S., Zak D. R., Kubiske M. E., Hendrey G. R., Weinstein D., Nosal M., Percy K. E.. Scaling ozone responses of forest trees to the ecosystem level in a changing climate.  Plant, Cell and Environment. (2005);  28 965-981
  • 24 Keeling C. M., Whort T. P., Wahlen M., Vander Plict J.. International extremes in the rate of rise of atmospheric carbon dioxide since 1980.  Nature. (1995);  375 666-670
  • 25 King J. S., Kubiske M. E., Pregitzer K. S., Hendrey G. R., McDonald E. P., Giardina C. P., Quinn V. S., Karnosky D. F.. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2.  New Phytologist. (2005);  168 623-636
  • 26 Kohut R.. The long-term effects of carbon dioxide on natural systems: issues and research needs.  Environment International. (2003);  29 171-180
  • 27 Kozovits A. R., Matyssek R., Blaschke H., Göttlein A., Grams T. E. E.. Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons.  Global Change Biology. (2005);  11 1387-1401
  • 28 Kubiske M. E., Pregitzer K. S., Zak D. R., Mikan C. J.. Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO2 and soil N availability.  New Phytologist. (1998);  140 251-260
  • 29 Kubiske M. E., Quinn V. S., Heilman W. E., McDonald E. P., Marquardt P. E., Teclaw R. M., Friend A. L., Karnosky D. F.. Climatic variation mediates elevated CO2 and O3 effects on forest growth.  Global Change Biology. (2006);  12 1-15
  • 30 Laurence J. A., Andersen C. P.. Ozone and natural systems: understanding exposure, response, and risk.  Environment International. (2003);  29 155-160
  • 31 Lindroth R. L., Roth S., Nordheim E. V.. Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment.  Oecologia. (2001);  126 371-379
  • 32 Liu X., Kozovits A. R., Grams T. E. E., Blaschke H., Rennenberg H., Matyssek R.. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech.  Tree Physiology. (2004);  24 1045-1055
  • 33 Loya W. M., Pregitzer K. S., Karberg N. J., King J. S., Giardina C. P.. Reduction of soil carbon formation by tropospheric ozone under elevated carbon dioxide.  Nature. (2003);  425 705-707
  • 34 McBride J. R., Laven R. D.. Impact of oxidant air pollutants on forest succession in the mixed conifer forests of the San Bernardino Mountains. Miller, P. R. and McBridge, J. E., eds. Oxidant Air Pollution Impacts in the Montane Forests of Southern California: A Case Study of the San Bernardino Mountains. New York; Springer (1999): 338-352
  • 35 McDonald E. P., Kruger E. L., Riemenschneider D. E., Isebrands J. G.. Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands.  Functional Ecology. (2002);  16 792-801
  • 36 Meredith M. P., Stehman S. V.. Repeated measures experiments in forestry: focus on analysis of response curves.  Canadian Journal of Forest Research. (1991);  21 957-965
  • 37 Miller P. L.. Oxidant-induced community change in a mixed conifer forest. Naegele, J. S., ed. Air Pollution Damage to Vegetation. Washington, DC; American Chemical Society (Advances in Chemistry Series, v. 122) (1973): 101-117
  • 38 Moser E. B., Saxton A. M., Pezeshki S. R.. Repeated measures analysis of variance: application to tree research.  Canadian Journal of Forest Research. (1989);  20 524-535
  • 39 Percy K. E., Awmack C. S., Lindroth R. L., Kubiske M. E., Kopper B. J., Isebrands J. G., Pregitzer K. S., Hendrey G. R., Dickson R. E., Zak D. R., Oksanen E., Sober J., Harrington R., Karnosky D. F.. Altered performance of forest pests under CO2- and O3-enriched atmospheres.  Nature. (2002);  420 403-407
  • 40 Phillips R. L., Zak D. R., Holmes W. E., White D. C.. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone.  Oecologia. (2002);  131 236-244
  • 41 Poorter H., Navas M.-L.. Plant growth and competition at elevated CO2: on winners, losers, and functional groups.  New Phytologist. (2003);  157 175-198
  • 42 Pyke D. A., Thompson J. N.. Statistical analysis of survival and removal rate experiments.  Ecology. (1986);  67 240-245
  • 43 Saxe H., Ellsworth D. S., Heath J.. Tree and forest functioning and an enriched CO2 atmosphere.  New Phytologist. (1998);  139 395-436
  • 44 Schweitzer J. A., Bailey J. K., Rehill B. J., Martinsen G. D., Hart S. C., Lindroth R. L., Keim P., Whitham T. G.. Genetically based trait in a dominant tree affects ecosystem processes.  Ecology Letters. (2004);  7 127-134
  • 45 Steel R. G. D., Torrie J. H.. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. New York; McGraw-Hill (1980)
  • 46 Stott P. A., Kettleborough J. A.. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise.  Nature. (2002);  416 723-726
  • 47 Teyssonneyre C., Picon-Cochard C., Soussana J. F.. How can we predict the effects of elevated CO2 on the balance between perennial C3 grass species competing for light?.  New Phytologist. (2002);  154 53-64

M. E. Kubiske

USDA Forest Service
Forestry Sciences Laboratory

5985 Hwy. K

Rhinelander, WI 54501

USA

Email: mkubiske@fs.fed.us

Guest Editor: R. Matyssek

    >