Abstract
Chlamydomonas noctigama has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional
ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes
on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms
the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins
at the ER-Golgi interface. After addition of BFA (10 µg/ml) a marked increase in the
number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial
sections of cells do not provide any evidence for the existence of tubular connections
between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle
production is affected by BFA. The fusion of COPII-vesicles at the cis -Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After
15 min the cisternae of neighbouring Golgi stacks begin to fuse forming “mega-Golgis”,
which gradually curl before fragmenting into clusters of vesicles and tubules. These
are surrounded by the transitional ER on which vesicle-budding profiles are still
occasionally visible. Golgi remnants continue to survive for several hours and do
not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi
cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then
“mini Golgis” are seen whose cisternae grow in length and number to produce “mega
Golgis”. These structures then divide by vertical fission to produce Golgi stacks
of normal size and morphology roughly 60 min after drug wash-out.
Key words
Brefeldin A -
Chlamydomonas
- COP-vesicles - Golgi fission - Golgi fusion.
References
1
Altan-Bonnet N., Sougrat R., Lippincott-Schwartz J..
Molecular basis for Golgi maintenance and biogenesis.
Current Opinions in Cell Biology.
(2004);
16
364-372
68
Amrhein N., Filner P..
Adenosine 3′:5′-cyclic monophosphate in Chlamydomonas reinhardtii : isolation and characterization.
Proceedings of the National Academy of Sciences of the USA.
(1973);
70
1099-1103
2 Aniento F., Matsuoka K., Robinson D. G..
ER to Golgi transport: the COPII pathway. Robinson, D. G., ed. The Plant Endoplasmic Reticulum, Plant Cell Monographs, Vol.
4. Heidelberg; Springer Verlag (2006): 99-124
3
Balch W. E..
Vesicle traffic in vitro .
Cell.
(2004);
116
17-19
4
Bannykh S. I., Rowe T., Balch W. E..
The organization of endoplasmic reticulum export complexes.
Journal of Cell Biology.
(1996);
135
19-35
5
Becker B., Hickisch A..
Inhibition of contractile vacuole function by brefeldin A.
Plant Cell Physiology.
(2005);
46
201-212
6
Becker B., Melkonian M..
The secretory pathway of protists: spatial and functional organization and evolution.
Microbiology Reviews.
(1996);
60
697-721
7
Benchimol M., Ribiero K. C., Mariante R. M., Alderete J. F..
Structure and division of the Golgi complex in Trichomonas vaginalis and Tritrichomonas foetus .
European Journal of Cell Biology.
(2001);
80
593-607
8
Bevis B. J., Hammond A. T., Reinke C. A., Glick B. S..
De novo formation of transitional ER sites and Golgi structures in Pichia pastoris .
Nature Cell Biology.
(2002);
4
750-756
9
Boevink P., Oparka K., Santa Cruz S., Martin B., Betteridge A., Hawes C..
Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network.
The Plant Journal.
(1998);
15
441-447
69
Bonfanti L., Mironov A., Martinez-Menarguez J., Martella O., Fusella A., Baldassare M.,
Buccione R., Geuze H., Mironov A., Luini A..
Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence
for cisternal maturation.
Cell.
(1998);
95
993-1003
10
Bonifacino J. S., Glick B. S..
The mechanisms of vesicle budding and fusion.
Cell.
(2004);
116
153-166
11
Brandizzi F., Snap E., Roberts A., Lippincott-Schwartz J., Hawes C..
Membrane protein transport between the ER and Golgi in tobacco leaves is energy dependent
but cytoskeleton independent: evidence from selective photobleaching.
Plant Cell.
(2002);
14
1293-1309
12
Cox R., Mason-Gamer R. J., Jackson C. L., Segev N..
Phylogenetic analysis of Sec7-domain-containing Arf nucleotide exchangers.
Molecular Biology of the Cell.
(2004);
15
1487-1505
13
daSilva L. L., Snapp E. L., Denecke J., Lippincott-Schwartz J., Hawes C., Brandizzi F..
Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory
units in plant cells.
Plant Cell.
(2004);
16
1753-1771
14
Dairman M., Donofrio N., Domozych D. S..
The effects of brefeldin A upon the Golgi apparatus of the green algal flagellate,
Gloeomonas kupfferi .
Journal of Experimental Botany.
(1995);
46
181-186
15
Donaldson J. G., Honda A., Weigert R..
Multiple activities for Arf1 at the Golgi complex.
Biochimica et Biophysica Acta.
(2005);
1744
364-373
16
Domozych D. S..
Disruption of the Golgi apparatus and secretory mechanism in the desmid, Closterium acerosum by brefeldin A.
Journal of Experimental Botany.
(1999);
50
1323-1330
17
Falk H., Kleinig H..
Feinbau und Carotinoide von Tribonema (Xantophyceae).
Archiv für Mikrobiologie.
(1968);
61
347-362
18
Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., Delbarre A.,
Ueda T., Nakano A., Jurgens G..
The Arabidopsis GNOM ARF‐GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant
growth.
Cell.
(2003);
112
219-230
19
Geldner N., Richter S., Vieten A., Marquardt S., Torres-Ruiz R.A., Mayer U., Jürgens G..
Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related,
post-embryonic development of Arabidopsis .
Development.
(2004);
131
389-400
20
Geldner N..
The plant endosomal system - its structure and role in signal transduction and plant
development.
Planta.
(2004);
219
547-560
70
Glick B. S., Malhotra V. S..
The curious status of the Golgi apparatus.
Cell.
(1998);
95
883-889
21
Gruber H. E., Rosario B..
Ultrastructure of the Golgi apparatus and contractile vacuole in Chlamydomonas reinhardtii.
.
Cytologica.
(1979);
44
505-526
22
Haller K., Fabry S..
Brefeldin A affects synthesis and integrity of a eukaryotic flagellum.
Biochemistry and Biophysical Research Communications.
(1998);
242
597-601
23
Hawes C..
The plant Golgi apparatus.
New Phytologist.
(2005);
165
29-44
24
Hawes C., Satiat-Jeunemaitre B..
The plant Golgi apparatus - going with the flow.
Biochimica et Biophysica Acta.
(2005);
1744
93-107
25
He C. Y., Ho H. H., Malsam J., Chalouni C., West C. M., Ullu E., Toomre D., Warren G..
Golgi duplication in Trypanosoma brucei .
Journal of Cell Biology.
(2004);
165
313-321
26
Jackson C. L., Casanova J. E..
Turning on Arf: the sec7 familiy of guanine nucleotide exchange factors.
Trends in Cell Biology.
(2000);
121
317-333
27
Jürgens G..
Membrane trafficking in plants.
Annual Reviews in Cell Biology.
(2004);
20
481-504
28
Klausner R. D., Donaldson J. G., Lippincott-Schwartz J..
Brefeldin A: insights into the control of membrane traffic and organelle structure.
Journal of Cell Biology.
(1992);
116
1071-1080
72
Ladinsky M. S., Mastronarde D. N., McIntosh J. R., Howell K. E., Staehelin L. A..
Golgi structure in three dimensions: functional insights from the normal rat kidney
cell.
Journal of Cell Biology.
(1999);
114
1135-1149
73
Lamandé S. R., Bateman J. F..
Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular
chaperones.
Seminars in Cell and Developmental Biology.
(1999);
10
455-464
29
Lee M. C. S., Miller E. A., Goldberg J., Orci L., Schekman R..
Bi-directional protein transport between the ER and Golgi.
Annual Reviews in Cell and Developmental Biology.
(2004);
20
87-123
30
Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D..
Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin
A: evidence for membrane cycling from Golgi to ER.
Cell.
(1989);
56
801-813
31
Lucic V..
Structural studies by electron tomography: from cells to molecules.
Annual Reviews in Biochemistry.
(2005);
74
833-865
74
Meindl U., Lancelle S., Hepler P. K..
Vesicle production and fusion during lobe formation in Micrasterias visualized by
high-pressure freeze fixation.
Protoplasma.
(1992);
170
104-114
32
Mironov A. A., Beznoussenko G. V., Trucco A., Lupetti P., Smith J. D., Geerts W. J.,
Koster A. J., Burger K. N., Martone M. E., Deerinck T. J., Ellismann M. H., Luini A..
ER‐to-Golgi carriers arise through en bloc protusion and multistage maturation of
specialized ER exit domains.
Developmental Cell.
(2003);
5
583-594
33 Morré J., Mollenhauer H. H., Bracker C. E..
Origin and continuity of Golgi apparatus. Reinert, J. and Ursprung, H., eds. Origin and Continuity of Cell Organelles. Berlin,
Heidelberg, New York; Springer Verlag (1971): 82-126
34
Movafeghi. A., Happel N., Pimpl P., Tai G. H., Robinson D. G..
Arabidopsis Sec21 and Sec23 homologs. Probable coat proteins of plant COP-coated vesicles.
Plant Physiology.
(1999);
119
1437-1446
75
Nebenführ A., Gallagher L. A., Dunahay T. G., Frohlick J. A., Mazurkiewicz A. M.,
Meehl J. B., Staehelin L. A..
Stop-and-go movements of plant Giolgi stacks are mediated by the acto-myosin system.
Plant Physiology.
(1999);
121
1127-1141
35
Nebenführ A., Ritzenthaler C., Robinson D. G..
Brefeldin A: deciphering an enigmatic inhibitor of secretion.
Plant Physiology.
(2002);
130
1102-1108
36
Noguchi T., Watanabe H., Suzuki R..
Effects of brefeldin A on the Golgi apparatus, the nuclear envelope and the endoplasmic
reticulum in a green alga, Scenedesmus acutus .
Protoplasma.
(1998);
201
202-212
37
Noguchi T., Watanabe H..
Brefeldin A effects on the trans-Golgi network and Golgi bodies in Botryococcus braunii are not uniform during the cell cycle.
Protoplasma.
(1999);
209
193-206
38
Pelletier L., Stern C. A., Pypaert M., Sheff D., Ngo H. M., Roper N., He C. Y., Hu K.,
Toomre D., Coppens I., Roos D. S., Joiner K. A., Warren G..
Golgi biogenesis in Toxoplasma gondii .
Nature.
(2002);
418
548-552
39
Phillipson B., Pimpl P., Pinto da Silva L., Crofts A. J., Taylor P., Movafeghi A.,
Robinson D. G., Denecke J..
Secretory bulk flow of soluble proteins is efficient and COPII dependent.
Plant Cell.
(2001);
13
2005-2020
40
Pimpl P., Movafeghi A., Coughlan S., Denecke J., Hillmer S., Robinson D. G..
In situ localization and in vitro induction of plant COPI-coated vesicles.
Plant Cell.
(2000);
12
2219-2236
41
Polischuck R. S., Mironov A. A..
Structural aspects of Golgi function.
Cell and Molecular Life Sciences.
(2004);
61
146-158
43
Presley J. F., Smith C., Hirschberg K., Miller C., Cole N. B., Zaal K. J., Lippincott-Schwartz J..
Golgi membrane dynamics.
Molecular Biology of the Cell.
(1998);
7
1617-1626
44
Pröschold T., Birger M., Schlösser U. W., Melkonian M..
Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi and description of Oogochlamys gen. nov. and Lobochlamys gen. nov.
Protist.
(2001);
152
265-300
45
Renault L., Guibert B., Cherfils J..
Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange
factor.
Nature.
(2003);
426
525-530
76
Ritzenthaler C., Nebenführ A., Movafeghi A., Stussi-Garaud C., Behnia L., Pimpl P.,
Staehelin L. A., Robinson D. G..
Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow
2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera.
Plant Cell.
(2002);
14
237-261
77
Robinson D. G., Kristen U..
Membrane flow via the Golgi apparatus of higher plant cells.
International Review of Cytology.
(1982);
77
89-127
46
Runions J., Brach T., Kühner S., Hawes C..
Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane.
Journal of Experimental Botany.
(2006);
57
43-50
47
Salomon S., Meindl U..
Brefeldin A induces reversible dissociation of the Golgi apparatus in the green alga
Micrasterias .
Protoplasma.
(1996);
194
231-242
48
Samaj J., Read N. D., Volkmann D., Menzel D., Baluska F..
The endocytic network in plants.
Trends in Cell Biology.
(2005);
15
425-433
49
Sasso A., de Faria F. P., Iwamura E. S., Correa H..
A three dimensional reconstruction study of the rough ER-Golgi interface in serial
thin sections of the pancreatic acinar cell of the rat.
Journal of Cell Science.
(1994);
107
517-528
78
Satiat-Jeunemaitre B., Hawes C. R..
Redistribution of a Golgi glycoprotein in plant cells treated with brefeldin A.
Journal of Cell Science.
(1992);
103
1153-1166
50
Satiat-Jeunemaitre B., Cole L., Bourett T., Howard R., Hawes C..
Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking?.
Journal of Microscopy.
(1996);
181
162-177
51
Scheel J., Pepperkok R., Lowe M., Griffiths G., Kreis T..
Dissociation of coatomer from membranes is required brefeldin A-induced transfer of
Golgi enzymes to the endoplasmic reticulum.
Journal of Cell Biology.
(1997);
137
319-333
52
Schekman R., Orci L..
Coat proteins and vesicle budding.
Science.
(1996);
271
1526-1533
53
Sciaky N., Presley J., Smith C., Zaal K. J., Cole N., Moreira J. E., Terasaki M.,
Siggia E., Lippincott-Schwartz J..
Golgi tubule traffic and the effects of brefeldin A visualized in living cells.
Journal of Cell Biology.
(1997);
139
1137-1155
54
Staehelin L. A..
The plant ER: a dynamic organelle composed of a large number of discrete functional
domains.
The Plant Journal.
(1997);
11
1151-1165
55
Staehelin L. A., Driouich A..
Brefeldin A effects in plants: are different Golgi responses caused by different sites
of action?.
Plant Physiology.
(1997);
114
401-403
56
Stefano G., Renna L., Chatre L., Hanton S. L., Moreau P., Hawes C., Brandizzi F..
In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic
reticulum and of ER export sites depends on active COPI machinery.
The Plant Journal.
(2006);
46
95-110
57
Steinmann T., Geldner N., Grebe M., Mangold S., Jackson C. L., Paris S., Gälweiler L.,
Palme K., Jürgens G..
Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF.
Science.
(1999);
286
316-318
58
Stephens D. J., Pepperkok R..
Imaging of procollagen transports reaveals COPI dependent cargo sorting during ER‐to-Golgi
transport in mammalian cells.
Journal of Cell Science.
(2002);
115
1149-1160
59
Takeuchi M., Ueda T., Sato K., Abe H., Nagata T., Nakano A..
A dominant negative mutant of sar1 GTPase inhibits protein transport from the endoplasmic
reticulum to the Golgi apparatus in tobacco and Arabidopsis cultured cells.
The Plant Journal.
(2000);
23
517-525
60
Tanaka Y., Noguchi T..
Cytoskeleton mediating transport between the ER system and the Golgi apparatus in
the green alga Scenedesmus acutus .
European Journal of Cell Biology.
(2000);
79
750-758
79
Ward T. H., Polishchuk S., Caplan S., Hirschberg K., Lippincott-Schwarz J..
Maintenance of Golgi structure and function depends on the integrity of ER export.
Journal of Cell Biology.
(2001);
155
557-570
62
Warren G..
Membrane partitioning during cell division.
Annual Reviews of Biochemistry.
(1993);
62
323-348
63
Wood S. A., Park J. E., Brown W. J..
Brefeldin A causes a microtubule-mediated fusion of the trans Golgi network and early
endosomes.
Cell.
(1991);
67
591-600
64
Yang Y. D., Elamawi R., Bubeck J., Pepperkok R., Ritzenthaler C., Robinson D. G..
Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY‐2 cells provides evidence for transient association of Golgi stacks with endoplasmic
reticulum exit sites.
Plant Cell.
(2005);
17
1513-1531
65
Zaal K. J. M., Smith C. L., Polishchuk R. S., Altan N., Cole N. B., Ellenberg J.,
Hirschberg K., Presley J. F., Roberts T. H., Siggia E., Phair R. D., Lippincott-Schwartz J..
Golgi membranes are adsorbed into and reemerge from the ER during mitosis.
Cell.
(1999);
99
589-601
66
Zeuschner D., Geerts W. J. C., van Donselaar E., Humbel B. M., Slot J. W., Koster A.,
Klumperman J..
Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated
transport carriers.
Nature Cell Biology.
(2006);
8
377-383
67
Zhang Y.-H., Robinson D. G..
The endomembranes of Chlamydomonas reinhardii : a comparison of the wildtype with wall mutants CW2 and CW15.
Protoplasma.
(1986);
133
186-194
1 These authors contributed equally to this paper
D. G. Robinson
Department of Cell Biology Heidelberg Institute for Plant Sciences (HIP) University of Heidelberg
Im Neuenheimer Feld 230
69120 Heidelberg
Germany
Email: david.robinson@urz.uni-heidelberg.de
Editor: S. M. Wick