Zusammenfassung
Die Funktion des hyalinen Knorpels hängt entscheidend von der Homöostase der chondralen
Matrixbestandteile (vor allem Kollagen II und Proteoglykane) ab. Dieses Gleichgewicht
wird durch die abgestimmte Steuerung von Synthese- und Abbauprozessen der Matrixbestandteile
gewährleistet. Knorpel ist ein mehrschichtiges Gewebe: oberflächliche Tangentialschicht,
mittlere Schicht, Radiärschicht, Tidemark und subchondraler Knochen. Die oberflächliche
Schicht ist reich an zur Oberfläche ausgerichteten Kollagenfasern und damit sehr resistent
gegenüber den auftretenden Druck- und Scherkräften. Die tieferen Schichten enthalten
Proteoglykane in hoher Konzentration, diese binden Wasser und bewirken so die Vorspannung
für die Kollagenfasern und können vor allem auftretende Druckkräfte neutralisieren.
Der Matrix-Turnover wird hauptsächlich durch Zytokine und die damit verbundene Aktivierung
von Matrix-Metallo-Proteasen gesteuert. Charakteristisch für den Knorpel ist die viskoelastische
Reaktion auf Belastung. Im Rahmen der Knorpeldegeneration kommt es zum Überwiegen
kataboler Prozesse in dessen Folge der Kollagen-II- und Proteoglykangehalt sinkt.
Wassereinstrom führt zum Knorpelödem und die Chondrozyten werden apoptotisch. Das
führt zur Verminderung der mechanischen Belastbarkeit, infolgedessen Knorpelschäden
unterschiedlicher Schweregrade entstehen. Sekundäre Schäden am subchondralen Knochen
und der Synovia führen schließlich zur Arthrose.
Abstract
Articular cartilage homoeostasis is critical for joint function. The steady state
homoeostasis of articular cartilage matrix composits (above all collagen type II and
proteoglycans) is a balance between anabolic morphogens such as cartilage derived
morphogenetic proteins. Cartilage composites of superficial tangential zone, middle
zone, deep radial zone, tide mark and subchondral bone. The superior zone is rich
on radial orientated collagen fibers. This causes a high mechanical resistance against
pressure and shear forces. The deep layers contain more proteoglycans and water. This
creates a preload for the collagen fibers as well as neutralizes pressure forces too.
The matrix turnover is regulated by cytokines which activate matrix metalloproteinases.
The biomechanical property of cartilage is characterized by viscoelasticity. Cartilage
degeneration is caused by the increase of katabolic processes. There is a decrease
of matrix composites like collagen type II and proteoglycans. The increases of water
content products the edema and the chondrocytes become apoptoptically. This is conformed
by a decreased mechanical resistance. The cartilage defects results from this loss
of mechanical properties. Secondary are damages within the subchondral bone and the
synovia. This is characteristically for the osteoarthritis.
Literatur
1 Wissenschaftliche Tabellen: Somatometrie und Biochemie. Basel; Ciba-Geigy 1982
3 Roche Lexikon der Medizin. Jena, München; Urban und Fischer 2003
4 Abbott A E, Levine W N, Mow V C.
Biomechanics of articular cartilage and menisci of the adult knee. Callaghan JJ, Rosenberg AG, Rubash HE, Simonian PT, Wickiewicz TL The Adult Knee. Philadelphia,
Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo; Lippincott Williams
and Wilkins 2003: 81-104
5
Adams C S, Horton Jr W E.
Chondrocyte apoptosis increases with age in the articular cartilage of adult animals.
Anat Rec.
1998;
250
418-425
6
Adams M E, Grant M D, Ho A.
Cartilage proteoglycan changes in experimental canine osteoarthritis.
J Rheumatol.
1987;
14
107-109
7
Ahmed M S, Matsumura B, Cristian A.
Age-related changes in muscles and joints.
Phys Med Rehabil Clin N Am.
2005;
16
19-39
8
Aigner T, Reichenberger E, Bertling W, Kirsch T, Stoss H, von der Mark K.
Type X collagen expression in osteoarthritic and rheumatoid articular cartilage.
Virchows Arch B Cell Pathol Incl Mol Pathol.
1993;
63
205-211
9
Amin A R, Abramson S B.
The role of nitric oxide in articular cartilage breakdown in osteoarthritis.
Curr Opin Rheumatol.
1998;
10
263-268
10
Arend W P, Malyak M, Guthridge C J, Gabay C.
Interleukin-1 receptor antagonist: role in biology.
Annu Rev Immunol.
1998;
16
27-55
11
Armstrong C G, Mow V C.
Variations in the intrinsic mechanical properties of human articular cartilage with
age, degeneration, and water content.
J Bone Joint Surg [Am].
1982;
64
88-94
12 Atkinson K, Reginato A M.
The synovium. Callaghan JJ, Rosenberg AG, Rubash HE, Simonian PT, Wickiewicz TL The Adult Knee. Philadelphia,
Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo; Lippincott Williams
and Wilkins 2003: 203-212
13
Bennell K L, Hinman R S, Metcalf B R, Crossley K M, Buchbinder R, Smith M, McColl G.
Relationship of knee joint proprioception to pain and disability in individuals with
knee osteoarthritis.
J Orthop Res.
2003;
21
792-797
14
Benninghoff A.
Über den funktionellen Bau des Knorpels.
Anat Anz.
1922;
55
250-267
15
Blanco F J, Ochs R L, Schwarz H, Lotz M.
Chondrocyte apoptosis induced by nitric oxide.
Am J Pathol.
1995;
146
75-85
16
Bobacz K, Gruber R, Soleiman A, Graninger W B, Luyten F P, Erlacher L.
Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy
and osteoarthritic human articular chondrocytes and stimulate matrix synthesis.
Osteoarthritis Cartilage.
2002;
10
394-401
17
Bonner W M, Jonsson H, Malanos C, Bryant M.
Changes in the lipids of human articular cartilage with age.
Arthritis Rheum.
1975;
18
461-473
18
Brandt K D.
Neuromuscular aspects of osteoarthritis: a perspective.
Novartis Found Symp.
2004;
260
49-58
19 Brinckmann P, Frobin W, Leivseth G. Orthopädische Biomechanik. Stuttgart, New York;
Thieme 2000
20
Bruyere O, Collette J, Kothari M, Zaim S, White D, Genant H K, Peterfy C, Burlet N,
Ethgen D, Montague T, Dabrowski C, Reginster J Y.
Osteoarthritis, magnetic resonance imaging and biochemical markers: a one-year prospective
study.
Ann Rheum Dis.
2006;
65
1050-1054
21
Buckland-Wright C.
Subchondral bone changes in hand and knee osteoarthritis detected by radiography.
Osteoarthritis Cartilage.
2004;
12 (Suppl A)
S10-S19
22
Budde B, Blumbach K, Ylostalo J, Zaucke F, Ehlen H W, Wagener R, la-Kokko L, Paulsson M,
Bruckner P, Grassel S.
Altered integration of matrilin-3 into cartilage extracellular matrix in the absence
of collagen IX.
Mol Cell Biol.
2005;
25
10465-10478
23
Carter D R, Beaupre G S, Wong M, Smith R L, Andriacchi T P, Schurman D J.
The mechanobiology of articular cartilage development and degeneration.
Clin Orthop Relat Res.
2004;
427
S69-S77
25 Chandnani V, Resnick D.
Radiologic diagnosis. Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg VM Osteoarthritis. Diagnosis
and Medical/Surgical Management. Philadelphia, London, New York, St. Louis, Sydney,
Toronto; WB Saunders 2001: 239-272
26
Charlebois M, McKee M D, Buschmann M D.
Nonlinear tensile properties of bovine articular cartilage and their variation with
age and depth.
J Biomech Eng.
2004;
126
129-137
27 Deutzmann R, Bruckner-Tuderman L, Bruckner P.
Binde- und Stützgewebe. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York,
Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 753-788
28
Elliott D M, Narmoneva D A, Setton L A.
Direct measurement of the Poisson's ratio of human patella cartilage in tension.
J Biomech Eng.
2002;
124
223-228
29
Fitzgerald G K, Piva S R, Irrgang J J.
Reports of joint instability in knee osteoarthritis: its prevalence and relationship
to physical function.
Arthritis Rheum.
2004;
51
941-946
30
Frank S, Schulthess T, Landwehr R, Lustig A, Mini T, Jeno P, Engel J, Kammerer R A.
Characterization of the matrilin coiled-coil domains reveals seven novel isoforms.
J Biol Chem.
2002;
277
19071-19079
31
Gelse K, Soder S, Eger W, Diemtar T, Aigner T.
Osteophyte development - molecular characterization of differentiation stages.
Osteoarthritis Cartilage.
2003;
11
141-148
32
Goldring S R, Goldring M B.
The role of cytokines in cartilage matrix degeneration in osteoarthritis.
Clin Orthop Relat Res.
2004;
427
S27-S36
34
Greenwald R A, Moy W W.
Inhibition of collagen gelation by action of the superoxide radical.
Arthritis Rheum.
1979;
22
251-259
35
Greenwald R A, Moy W W.
Effect of oxygen-derived free radicals on hyaluronic acid.
Arthritis Rheum.
1980;
23
455-463
36
Greenwald R A, Moy W W, Seibold J.
Functional properties of cartilage proteoglycans.
Semin Arthritis Rheum.
1978;
8
53-67
37
Guilak F, Mow V C.
The mechanical environment of the chondrocyte: a biphasic finite element model of
cell-matrix interactions in articular cartilage.
J Biomech.
2000;
33
1663-1673
38
Hall A C, Urban J P, Gehl K A.
The effects of hydrostatic pressure on matrix synthesis in articular cartilage.
J Orthop Res.
1991;
9
1-10
39
Hall M C, Mockett S P, Doherty M.
Relative impact of radiographic osteoarthritis and pain on quadriceps strength, proprioception,
static postural sway and lower limb function.
Ann Rheum Dis.
2006;
65
865-870
40
Hardy M M, Seibert K, Manning P T, Currie M G, Woerner B M, Edwards D, Koki A, Tripp C S.
Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation
in human osteoarthritis explants.
Arthritis Rheum.
2002;
46
1789-1803
41
Hashimoto S, Ochs R L, Komiya S, Lotz M.
Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis.
Arthritis Rheum.
1998;
41
1632-1638
42
Hashimoto S, Ochs R L, Rosen F, Quach J, McCabe G, Solan J, Seegmiller J E, Terkeltaub R,
Lotz M.
Chondrocyte-derived apoptotic bodies and calcification of articular cartilage.
Proc Natl Acad Sci USA.
1998;
95
3094-3099
43 Heinrich P C, Schaper F, Timmermann A, Martens A S, Lehmann U.
Endokrine Funktionen. Zytokine. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York,
Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 814-835
44
Hesse I, Mohr W, Hesse W.
[Morphologic changes in the early stages of arthrosis].
Orthopäde.
1990;
19
16-27
45
Hollander A P, Pidoux I, Reiner A, Rorabeck C, Bourne R, Poole A R.
Damage to type II collagen in aging and osteoarthritis starts at the articular surface,
originates around chondrocytes, and extends into the cartilage with progressive degeneration.
J Clin Invest.
1995;
96
2859-2869
46
Jaffe F F, Mankin H J, Weiss C, Zarins A.
Water binding in the articular cartilage of rabbits.
J Bone Joint Surg [Am].
1974;
56
1031-1039
47
Jurvelin J S, Buschmann M D, Hunziker E B.
Mechanical anisotropy of the human knee articular cartilage in compression.
Proc Inst Mech Eng [H].
2003;
217
215-219
48
Kamibayashi L, Wyss U P, Cooke T D, Zee B.
Changes in mean trabecular orientation in the medial condyle of the proximal tibia
in osteoarthritis.
Calcif Tissue Int.
1995;
57
69-73
49
Kelman A, Lui L, Yao W, Krumme A, Nevitt M, Lane N E.
Association of higher levels of serum cartilage oligomeric matrix protein and N-telopeptide
crosslinks with the development of radiographic hip osteoarthritis in elderly women.
Arthritis Rheum.
2006;
54
236-243
50
Kim Y J, Bonassar L J, Grodzinsky A J.
The role of cartilage streaming potential, fluid flow and pressure in the stimulation
of chondrocyte biosynthesis during dynamic compression.
J Biomech.
1995;
28
1055-1066
51
Kiviranta P, Rieppo J, Korhonen R K, Julkunen P, Toyras J, Jurvelin J S.
Collagen network primarily controls Poisson's ratio of bovine articular cartilage
in compression.
J Orthop Res.
2006;
24
690-699
52
Kleemann R U, Krocker D, Cedraro A, Tuischer J, Duda G N.
Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical
assessment (ICRS Grade).
Osteoarthritis Cartilage.
2005;
13
958-963
53
Klein T J, Chaudhry M, Bae W C, Sah R L.
Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered
articular cartilage.
J Biomech.
2005;
29
54
Koelling S, Clauditz T S, Kaste M, Miosge N.
Cartilage oligomeric matrix protein is involved in human limb development and in the
pathogenesis of osteoarthritis.
Arthritis Res Ther.
2006;
8
R56
55
Koralewicz L M, Engh G A.
Comparison of proprioception in arthritic and age-matched normal knees.
J Bone Joint Surg [Am].
2000;
82
1582-1588
56
Laasanen M S, Saarakkala S, Toyras J, Hirvonen J, Rieppo J, Korhonen R K, Jurvelin J S.
Ultrasound indentation of bovine knee articular cartilage in situ.
J Biomech.
2003;
36
1259-1267
57
Lai W M, Hou J S, Mow V C.
A triphasic theory for the swelling and deformation behaviors of articular cartilage.
J Biomech Eng.
1991;
113
245-258
58
Laufer S.
Role of eicosanoids in structural degradation in osteoarthritis.
Curr Opin Rheumatol.
2003;
15
623-627
59
Li J, Kim K S, Park J S, Elmer W A, Hutton W C, Yoon S T.
BMP‐2 and CDMP‐2: stimulation of chondrocyte production of proteoglycan.
J Orthop Sci.
2003;
8
829-835
60 Löffler G.
Stoffwechsel von Triglycerinen und Fettsäuren. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York,
Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 753-788
61 Löffler G, Montenarh M.
Replikation und Gentechnik. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York,
Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 209-242
62
Mankin H J.
Mitosis in articular cartilage of immature rabbits. A histologic, stathmokinetic (colchicine)
and autoradiographic study.
Clin Orthop Relat Res.
1964;
34
170-183
63
Maroudas A, Bayliss M T, Uchitel-Kaushansky N, Schneiderman R, Gilav E.
Aggrecan turnover in human articular cartilage: use of aspartic acid racemization
as a marker of molecular age.
Arch Biochem Biophys.
1998;
350
61-71
64
Maroudas A, Venn M.
Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage.
II. Swelling.
Ann Rheum Dis.
1977;
36
399-406
65
Martin J A, Buckwalter J A.
Telomere erosion and senescence in human articular cartilage chondrocytes.
J Gerontol A Biol Sci Med Sci.
2001;
56
B172-B179
66
Martin J A, Ellerbroek S M, Buckwalter J A.
Age-related decline in chondrocyte response to insulin-like growth factor-I: the role
of growth factor binding proteins.
J Orthop Res.
1997;
15
491-498
67
Meachim G, Allibone R.
Topographical variation in the calcified zone of upper femoral articular cartilage.
J Anat.
1984;
139
341-352
68
Messier S P, Glasser J L, Ettinger Jr W H, Craven T E, Miller M E.
Declines in strength and balance in older adults with chronic knee pain: a 30-month
longitudinal, observational study.
Arthritis Rheum.
2002;
47
141-148
69
Meyer F A, Yaron I, Yaron M.
Synergistic, additive, and antagonistic effects of interleukin-1 beta, tumor necrosis
factor alpha, and gamma-interferon on prostaglandin E, hyaluronic acid, and collagenase
production by cultured synovial fibroblasts.
Arthritis Rheum.
1990;
33
1518-1525
70
Milentijevic D, Torzilli P A.
Influence of stress rate on water loss, matrix deformation and chondrocyte viability
in impacted articular cartilage.
J Biomech.
2005;
38
493-502
71 Mohr W. Gelenkpathologie. Berlin, Heidelberg, New York; Springer 2000
72
Moser C, Baltzer A, Reinecke J, Wehling P.
Die Rolle der Zytokine bei Knorpeldefekten und in der Knorpeltherapie.
Arthroskopie.
2005;
18
181-185
73
Moskowitz R W, Howell D S, Goldberg V M, Muniz O, Pita J C.
Cartilage proteoglycan alterations in an experimentally induced model of rabbit osteoarthritis.
Arthritis Rheum.
1979;
22
155-163
74
Mow V C, Holmes M H, Lai W M.
Fluid transport and mechanical properties of articular cartilage: a review.
J Biomech.
1984;
17
377-394
75
Mow V C, Wang C C, Hung C T.
The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer
in articular cartilage.
Osteoarthritis Cartilage.
1999;
7
41-58
76
Murphy G, Docherty A J.
The matrix metalloproteinases and their inhibitors.
Am J Respir Cell Mol Biol.
1992;
7
120-125
78
Nagase H, Kashiwagi M.
Aggrecanases and cartilage matrix degradation.
Arthritis Res Ther.
2003;
5
94-103
79
Pai Y C, Rymer W Z, Chang R W, Sharma L.
Effect of age and osteoarthritis on knee proprioception.
Arthritis Rheum.
1997;
40
2260-2265
80
Poole A R, Rosenberg L C, Reiner A, Ionescu M, Bogoch E, Roughley P J.
Contents and distributions of the proteoglycans decorin and biglycan in normal and
osteoarthritic human articular cartilage.
J Orthop Res.
1996;
14
681-689
81
Poole C A, Flint M H, Beaumont B W.
Chondrons extracted from canine tibial cartilage: preliminary report on their isolation
and structure.
J Orthop Res.
1988;
6
408-419
82
Pullig O, Weseloh G, Swoboda B.
Expression of type VI collagen in normal and osteoarthritic human cartilage.
Osteoarthritis Cartilage.
1999;
7
191-202
83
Rizkalla G, Reiner A, Bogoch E, Poole A R.
Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis.
Evidence for molecular heterogeneity and extensive molecular changes in disease.
J Clin Invest.
1992;
90
2268-2277
84
Saarakkala S, Korhonen R K, Laasanen M S, Toyras J, Rieppo J, Jurvelin J S.
Mechano-acoustic determination of Young's modulus of articular cartilage.
Biorheology.
2004;
41
167-179
85
Schneiderman R, Keret D, Maroudas A.
Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis
in the human adult femoral head cartilage: an in vitro study.
J Orthop Res.
1986;
4
393-408
86
Schumacher B L, Hughes C E, Kuettner K E, Caterson B, Aydelotte M B.
Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein,
synthesized by cells lining synovial joints.
J Orthop Res.
1999;
17
110-120
87
Sharif M, Granell R, Johansen J, Clarke S, Elson C, Kirwan J R.
Serum cartilage oligomeric matrix protein and other biomarker profiles in tibiofemoral
and patellofemoral osteoarthritis of the knee.
Rheumatology (Oxford).
2006;
45
522-526
88
Spahn G, Heinecke K, Gross G, Tepper W.
[Arthroscopic joint debridement for gonarthrosis: influence of degree of chondral
damage and muscle weakness on results].
Z Orthop Ihre Grenzgeb.
2004;
142
60-65
89
Spahn G, Wittig R.
[Biomechanical properties (compressive strength and compressive pressure at break)
of hyaline cartilage under axial load].
Zentralbl Chir.
2003;
128
78-82
90
Stefanovic-Racic M, Mollers M O, Miller L A, Evans C H.
Nitric oxide and proteoglycan turnover in rabbit articular cartilage.
J Orthop Res.
1997;
15
442-449
91
Tortorella M D, Burn T C, Pratta M A, Abbaszade I, Hollis J M, Liu R, Rosenfeld S A,
Copeland R A, Decicco C P, Wynn R, Rockwell A, Yang F, Duke J L, Solomon K, George H,
Bruckner R, Nagase H, Itoh Y, Ellis D M, Ross H, Wiswall B H, Murphy K, Hillman Jr M C,
Hollis G F, Newton R C, Magolda R L, Trzaskos J M, Arner E C.
Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins.
Science.
1999;
284
1664-1666
92
Torzilli P A, Rose D E, Dethmers D A.
Equilibrium water partition in articular cartilage.
Biorheology.
1982;
19
519-537
93
Verzijl N, DeGroot J, Thorpe S R, Bank R A, Shaw J N, Lyons T J, Bijlsma J W, Lafeber F P,
Baynes J W, TeKoppele J M.
Effect of collagen turnover on the accumulation of advanced glycation end products.
J Biol Chem.
2000;
275
39027-39031
94
Vignon E, Arlot M, Patricot L M, Vignon G.
The cell density of human femoral head cartilage.
Clin Orthop Relat Res.
1976;
121
303-308
95
Vilalta C, Nunez M, Segur J M, Domingo A, Carbonell J A, Macule F.
Knee osteoarthritis: interpretation variability of radiological signs.
Clin Rheumatol.
2004;
23
501-504
96
von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, Stoss H.
Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte
hypertrophy.
Arthritis Rheum.
1992;
35
806-811
97
Wachsmuth L, Engelke K.
High-resolution imaging of osteoarthritis using microcomputed tomography.
Methods Mol Med.
2004;
101
231-248
98
Wegener L, Kisner C, Nichols D.
Static and dynamic balance responses in persons with bilateral knee osteoarthritis.
J Orthop Sports Phys Ther.
1997;
25
13-18
99
Wong M, Carter D R.
Articular cartilage functional histomorphology and mechanobiology: a research perspective.
Bone.
2003;
33
1-13
100
Yudoh K, Nguyen T, Nakamura H, Hongo-Masuko K, Kato T, Nishioka K.
Potential involvement of oxidative stress in cartilage senescence and development
of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation
of chondrocyte function.
Arthritis Res Ther.
2005;
7
R380-R391
101
Zhou S, Cui Z, Urban J P.
Factors influencing the oxygen concentration gradient from the synovial surface of
articular cartilage to the cartilage-bone interface: a modeling study.
Arthritis Rheum.
2004;
50
3915-3924
Dr. med. Gunter Spahn
Praxisklinik für Unfallchirurgie und Orthopädie
Sophienstraße 16
99817 Eisenach
Phone: 0 36 91/7 35 00
Fax: 0 36 91/73 50 11
Email: spahn@pk-eisenach.de