Zusammenfassung
Das Mammakarzinom ist ein immunogener Tumor, der eine hohe Zahl an Tumor-assoziierten
Antigenen exprimiert. Da die Tumorzellen bereits frühzeitig lymphogen und hämatogen
metastasieren, kommt es schnell zu einer Konfrontation mit dem zellulären Immunsystem.
Die Mammakarzinomzellen können vom zellulären Immunsystem über antigenpräsentierende
Zellen erkannt werden. Nur im Knochenmark von Patientinnen im primären und metastasierten
Stadium der Erkrankung konnten wir tumorantigen-reaktive CD45RO+ T-Gedächtniszellen (TMC) mittels Interferon-γ-ELISPOT-Analyse nachweisen. Die inaktiven
Immunzellen können ex vivo über eine Stimulation mit TAA (Tumor-assoziierte Antigene)-gepulsten
dendritischen Zellen (DC) zu Interferon-γ sezernierenden Effektorzellen aktiviert
werden. Diese antigenspezifischen, reaktivierten T-Zellen (CD4+ und CD8+ ) entwickelten dann sowohl ex vivo als auch in vivo antitumoröse Effekte wie die Produktion
von INF-γ und Perforin. Bei mit Tumorzellen beladenen immundefizienten NOD/SCID-Mäusen
konnten Remissionen in 80 % beobachtet werden. Diese hoffnungsvollen Ergebnisse könnten
bei passiven und aktiven Vakzinierungsstrategien eine bedeutende Rolle spielen.
Abstract
Breast cancer is an immunogenic tumor which expresses a wide range of tumor-associated
antigens (TAA). As breast cancer cells are able to metastasize even in the early stages
to lymph nodes and via blood to visceral organs and bone, there seems to be an immunological
confrontation which takes place in the beginning of the disease. Breast cancer cells
can be recognized by parts of the cellular immune system via antigen-presenting cells
such as dendritic cells which present TAAs to naïve immune cells. Only in bone marrow
of primary and metastatic breast cancer patients were we able to find tumorantigen-reactive
CD45RO+ memory T-cells (MTC) by using interferon-γ-ELISPOT analysis. Furthermore we were
able to reactivate those inactive T-cells ex vivo by stimulating them with TAA-pulsed
dendritic cells. The reactivated CD8+ and CD4+ TAA-specific T-effector cells exhibited antitumoral effects like the production of
INF-γ and perforin. In tumor-loaded NOD/SCID mice treated with those reactivated T-cells
we found tumor regression in 80 %. These hopeful results may play an important role
in further active and passive vaccination strategies.
Schlüsselwörter
Brustkrebs - Immunologie - T-Zellen - Immuntherapie
Key words
Breast cancer - immunology - T-cells - immunotherapy
Literatur
1 Janeway C A, Travers P, Walport M, Shlochik T. Immunobiology - the immune system
in health and disease. 6. Auflage. New York, NY; Garland Science 2005
2
Lanzavecchia A, Sallusto F.
From synapses to immunological memory: the role of sustained T cell stimulation.
Curr opin immunol.
2000;
12
92-98
3
Veiga-Fernandes H, Walter U, Bourgeois C, Mclean A, Rocha B.
Response of naïve and memory CD8 + T-cells to antigen stimulation in vivo.
Nature Immunol.
2000;
1
47-53
4
Wolf A M, Wolf D, Steurer M, Gastl G, Gunsilus E, Grubeck-Loebenstein B.
Increase of regulatory T cells in the peripheral blood of cancer patients.
Clin Canc Res.
2003;
9
606-612
5
Banchereau J, Steinman R M.
Dendritic cells and the control of immunity.
Nature.
1998;
392
245-252
6
Pulendran B, Palucka K, Banchereau J.
Sensing pathogens and tuning immune responses.
Science.
2001;
293
253-256
7
Fu Y X, Chaplin D D.
Development and maturation of secondary lymphoid tissues.
Ann Rev Immunol.
1999;
17
399-433
8
Nouri-Shirazi M, Banchereau J, Fay J, Palucka K.
Dendritic cell based tumor vaccines.
Immunol Lett.
2000;
74
5-10
9
Müller A, Homey B, Soto H. et al .
Involvement of chemokine receptors in breast cancer metastasis.
Nature.
2001;
410
50-55
10
Braun S, Naume B.
Circulating and disseminated tumor cells.
J Clin Oncol.
2005;
23
1623-1626
11
Schuetz F, Kalteisen S, Bastert B, Diel I J.
Higher incidence of bone metastases and higher mortality in primary breast cancer
patients with primary disseminated tumor cells to bone marrow.
J Canc Res Clin Oncol.
2004;
Suppl. 1
12
Becker S, Fehm T, Becker-Pergola G, Wallwiener D, Solomayer E F.
Tumorzelldissemination und Mikrometastasierung bei Mammakarzinom.
Geburtsh Frauenheilk.
2005;
65
1141-1146
13 Jaschke A, Schuetz F, Diel I J, Bastert B, Diel I J. Adjuvant clodronate treatment
improves the overall survival of primary breast cancer patients with micrometastases
to bone marrow - a long time follow-up. Proc ASCO 2004; Abstr.no. 529.
14
Fehm T, Gebauer G, Becker S, Vogel U, Bültmann D, Wallwiener D, Solomayer E F.
Genotypisierung von disseminierten epithelialen Zellen bei Mammakarzinompatientinnen.
Geburtsh Frauenheilk.
2004;
64
255-260
15
Bai L, Feuerer M, Beckhove P, Umansky V, Schirrmacher V.
Generation of dendritic cells from human bone marrow mononuclear cells: advantages
for clinical application in comparison to peripheral blood monocyte derived cells.
Int J Oncol.
2002;
20
247-253
16
Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hämmerling G J, Kyewski B,
Hamann A, Umansky V, Schirrmacher V.
Bone marrow as a priming site for T-cell responses to blood borne antigen.
Nature.
2003;
9
1151-1157
17
Di Rosa F, Santoni A.
Memory T-cell competition for bone marrow seeding.
Immunology.
2003;
108
296-304
18
Mahnke Y D, Schwendemann J, Beckhove P, Schirrmacher V.
Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour
cells.
Immunology.
2005;
115
325-336
19
Baccala R, Theofilipoulos A N.
The new paradigm of T-cell homeostatic proliferation induced autoimmunity.
Trends Immunol.
2005;
26
56-64
20
Feuerer M, Beckhove P, Mahnke Y, Hommel M, Kyewski B, Hamann A, Umansky V, Schirrmacher V.
Bone marrow environment facilitating dendritic cell: CD4 + T cell interactions and
maintenance of cd4 memory.
Int J Oncol.
2004;
25
867-876
21
Slamon D J, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W,
Wolter J, Pegram M, Baselga J, Norton L.
Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast
cancer that overexpresses HER2.
N Engl J Med.
2001;
344
783-792
22
Müller M, Gounari F, Prifti S, Hacker H J, Schirrmacher V, Khazaie K.
Tumor dormancy in the bone marrow: CD8 + immune cell dependent control of tumor growth
in a privileged compartment.
Cancer Res.
1998;
58
5439-5446
23
Feuerer M, Rocha M, Bai L, Umansky V, Solomayer E F, Bastert G, Diel I J, Schirrmacher V.
Enrichment of memory T cells and other profound immunological changes in the bone
marrow from untreated breast cancer patients.
Int J Cancer.
2001;
92
96-105
24
Feuerer M, Beckhove P, Bai L, Solomayer E F, Bastert G, Diel I J, Pedain C, Oberniedermar M,
Schirrmacher V, Umansky V.
Therapy of human tumors in NOD/ScCID mice with patient-derived reactivated memory
T cells from bone marrow.
Nature.
2001;
4
452-458
25
Beckhove P, Feuerer M, Dolenc M, Schetz F, Choi C, Sommerfeld N, Schwendemann J, Ehlert K,
Altevogt P, Bastert G, Schirrmacher V, Umansky V.
Specifically activated memory T cell subsets from cancer patients recognize and reject
xenotransplanted autologous tumors.
J Clin Invest.
2004;
114
67-76
26
Gückel B.
Vakzinierungen in der Therapie des Mammakarzinoms: Perspektiven und Probleme.
Geburtsh Frauenheilk.
2004;
64
1344-1347
27
Gückel B, Stumm S, Rentzsch C, Marme A, Mannhardt G, Wallwiener D.
A CD80-transfected human breast cancer cell variant induces HER‐2/neu-specific T cells
in HLA‐A*02-matched situations in vitro as well as in vivo.
Cancer Immunol Immunother.
2005;
54
129-140
F. Schütz
Universitätsfrauenklinik Heidelberg
Vossstraße 9
69115 Heidelberg
Email: florian.schuetz@med.uni-heidelberg.de