Plant Biol (Stuttg) 2007; 9(3): 427-434
DOI: 10.1055/s-2006-924670
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Virus-Induced Changes in the Subcellular Distribution of Glutathione Precursors in Cucurbita pepo (L.)

B. Zechmann1 , G. Zellnig1 , M. Müller1
  • 1Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
Further Information

Publication History

Received: March 8, 2006

Accepted: September 22, 2006

Publication Date:
04 December 2006 (online)

Abstract

Changes in glutathione contents occur in plants during environmental stress situations, such as pathogen attack, as the formation of reactive oxygen species leads to the activation of the antioxidative defence system. As glutathione is synthesized out of its constituents cysteine, glycine, and glutamate the availability of these components will limit glutathione synthesis in plants especially during stress situations and therefore the ability of the plant to fight oxidative stress. To gain a deeper insight into possible limitations of glutathione synthesis during pathogen attack the present investigations were aimed to study how the subcellular distribution of glutathione precursors correlates with the subcellular distribution of glutathione during virus attack in plants. Selective antibodies against cysteine, glutamate, and glycine were used to study the impact of Zucchini yellow mosaic virus (ZYMV) infection on glutathione precursor contents within different cell compartments of cells from Cucurbita pepo (L.) plants with the transmission electron microscope (TEM). Generally, levels of cysteine and glutamate were found to be strongly decreased in most cell compartments of younger and older leaves including glutathione-producing cell compartments such as plastids and the cytosol. The strongest decrease of cysteine was found in plastids (- 54 %) and mitochondria (- 51 %) of younger leaves and in vacuoles (- 37 %) and plastids (- 29 %) of older leaves. The strongest decrease of glutamate in younger leaves occurred in peroxisomes (- 67 %) and nuclei (- 58 %) and in peroxisomes (- 64 %) and plastids (- 52 %) of the older ones. Glycine levels were found to be strongly decreased (- 63 % in mitochondria and - 53 % in plastids) in most cell compartments of older leaves and strongly increased (about 50 % in plastids and peroxisomes) in all cell compartments of the younger ones. These results indicate that low glycine contents in the older leaves were responsible for low levels of glutathione in these organs during ZYMV infection rather than limited amounts of cysteine or glutamate. Glutathione precursors were virtually absent in cell walls and intercellular spaces and play therefore no important role during ZYMV attack in the apoplast. While glutamate was absent in vacuoles, elevated levels of glycine (up to 30 %) and decreased cysteine contents (up to - 37 %) were observed in vacuoles during ZYMV infection. The impact of the present results on the current knowledge about glutathione synthesis and degradation on the cellular level during ZYMV infection are discussed.

References

  • 1 Bortz J., Lienert G. A., Boehnke K.. Verteilungsfreie Methoden in der Biostatistik. Berlin, Heidelberg, New York, Tokyo; Springer Verlag (2000)
  • 2 De Gara L., de Pinto M. C., Tommasi F.. The antioxidant system vis-á-vis reactive oxygen species during plant-pathogen interaction.  Plant Physiology and Biochemistry. (2003);  41 863-870
  • 3 El-Zahaby H. M., Gullner G., Király Z.. Effects of powdery mildew infection of barley on the ascorbate-glutathione cycle and other antioxidants in different host-pathogen interactions.  Phytopathology. (1995);  85 1225-1230
  • 4 Fodor J., Gullner G., Ádám A. L., Barna B., Kömives T., Király Z.. Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco. Role in systemic acquired resistance.  Plant Physiology. (1997);  114 1443-1451
  • 5 Foyer C. H., Theodoulou F. L., Delrot S.. The functions of inter- and intracellular glutathione transport systems in plants.  Trends in Plant Science. (2001);  6 486-492
  • 6 Gomez L. D., Vanacker H., Buchner P., Noctor G., Foyer C. H.. Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling.  Plant Physiology. (2004);  134 1662-1671
  • 7 Gullner G., Kömives T.. The role of glutathione and glutathione-related enzymes in plant-pathogen interaction. Grill, D., Tausz, M., and De Kok, L. J., eds. Significance of Glutathione to Plant Adaptation to the Environment. Dordrecht, Boston, London; Kluwer Academic Publishers (2001): 207-239
  • 8 Kopriva S., Rennenberg H.. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism.  Journal of Experimental Botany. (2004);  55 1831-1842
  • 9 Kuźniak E., Sklodowska A.. The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves.  Plant Science. (1999);  148 69-76
  • 10 Kuźniak E., Sklodowska A.. Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection.  Journal of Experimental Botany. (2005);  56 921-933
  • 11 Müller M., Zechmann B., Zellnig G.. Ultrastructural localization of glutathione in Cucurbita pepo plants.  Protoplasma. (2004);  223 213-219
  • 12 Noctor G., Arisi A. C. M., Jouanin L., Valadier M. H., Roux Y., Foyer C. H.. The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress.  Physiologia Plantarum. (1997);  100 225-263
  • 13 Noctor G., Gomez L., Vanacker H., Foyer C. H.. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling.  Journal of Experimental Botany. (2002);  53 1283-1304
  • 14 Shaw M. L., Pither-Joyce M. D., McCallum J. A.. Purification and cloning of a γ-glutamyl transpeptidase from onion (Allium cepa).  Phytochemistry. (2005);  66 515-522
  • 15 Sugiyama A., Nishimura J., Mochizuki Y., Inagaki K., Sekiya J.. Homoglutathione synthesis in transgenic tobacco plants expressing soybean homoglutathione synthetase.  Plant Biotechnology. (2004);  21 79-83
  • 16 Storozhenko S., Belles-Boix E., Babiychuk E., Hérouart D., Davey M. W., Slooten L., van Montagu M., Inzé D., Kushnir S.. γ-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties.  Plant Physiology. (2002);  128 1109-1119
  • 17 Vanacker H., Carver T. L. W., Foyer C. H.. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves.  Plant Physiology. (1998 a);  117 1103-1114
  • 18 Vanacker H., Foyer C. H., Carver T. L. W.. Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance.  Planta. (1998 b);  208 444-452
  • 19 Vanacker H., Harbinson J., Ruisch J., Carver T. L. W., Foyer C. H.. Antioxidant defences of the apoplast.  Protoplasma. (1998 c);  205 129-140
  • 20 Vanacker H., Carver T. L. W., Foyer C. H.. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction.  Plant Physiology. (2000);  123 1289-1300
  • 21 Wachter A., Wolf S., Steininger H., Bogs J., Rausch T.. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae.  The Plant Journal. (2005);  41 15-30
  • 22 Wolf A. E., Dietz K. J., Schröder P.. Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole.  FEBS Letters. (1996);  384 31-34
  • 23 Zechmann B., Müller M., Zellnig G.. Cytological modifications in Zucchini yellow mosaic virus (ZYMV) infected Styrian oil pumpkin plants.  Archives of Virology. (2003);  148 1119-1133
  • 24 Zechmann B., Zellnig G., Müller M.. Changes in the subcellular distribution of glutathione during virus infection in Cucurbita pepo (L.).  Plant Biology. (2005);  7 49-57
  • 25 Zechmann B., Müller M., Zellnig G.. Intracellular adaptations of glutathione content in Cucurbita pepo (L.) induced by reduced glutathione and buthionine sulfoximine treatment.  Protoplasma. (2006);  227 197-209

M. Müller

Institute of Plant Sciences
University of Graz

Schubertstraße 51

8010 Graz

Austria

Email: maria.mueller@uni-graz.at

Editor: R. Goldbach