Plant Biol (Stuttg) 2006; 8(4): 503-514
DOI: 10.1055/s-2006-923979
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Analysis of Competition Effects in Mono- and Mixed Cultures of Juvenile Beech and Spruce by Means of the Plant Growth Simulation Model PLATHO

S. Gayler1 , T. E. E. Grams2 , A. R. Kozovits2 , 3 , J. B. Winkler1 , G. Luedemann2 , E. Priesack1
  • 1Institute of Soil Ecology, GSF - National Research Center for Environment and Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
  • 2Ecophysiology of Plants, Department of Ecology, Technische Universität München, Am Hochanger 13, 85354 Freising-Weihenstephan, Germany
  • 3Present address: Departamento de Ecologia, Universidade de Brasília, caixa postal 04457, Brasília-DF, 70919-970, Brazil
Further Information

Publication History

Received: October 4, 2005

Accepted: February 8, 2006

Publication Date:
11 May 2006 (online)

Abstract

Inter- and intra-specific competition between plants for external resources is a critical process for plant growth in natural and managed ecosystems. We present a new approach to simulate competition for the resources light, water, and nitrogen between individual plants within a canopy. This approach was incorporated in a process-oriented plant growth simulation model. The concept of modelling competition is based on competition coefficients calculated from the overlap of occupied crown and soil volumes of each plant individual with the occupied volumes of its four nearest neighbours. The model was parameterised with data from a two-year phytotron experiment with juvenile beech and spruce trees growing in mono- and mixed cultures. For testing the model, an independent data set from this experiment and data from a second phytotron experiment with mixed cultures were used. The model was applied to analyse the consequences of start conditions and plant density on plant-plant competition. In both experiments, spruce dominated beech in mixed cultures. Based on model simulations, we postulate a large influence of start conditions and stand density on the outcome of the competition between the species. When both species have similar heights at the time of canopy closure, the model suggests a greater morphological plasticity of beech compared with spruce to be the crucial mechanism for competitiveness in mixed canopies. Similar to the experiment, in the model greater plasticity was a disadvantage for beech leading to it being outcompeted by the more persistent spruce.

References

  • 1 Adiku S. G. K., Braddock R. D., Rose C. W.. Simulating root growth dynamics.  Environmental Software. (1996);  11 99-103
  • 2 Aerts R.. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks.  Journal of Experimental Botany. (1999);  50 29-37
  • 3 Baldioli M., Priesack E., Schaaf T., Sperr C., Wang E.. Expert-N, ein Baukasten zur Simulation der Stickstoffdynamik in Boden und Pflanze. Version 1.0, Benutzerhandbuch. Freising; Lehreinheit für Ackerbau und Informatik im Pflanzenbau, TU München, Selbstverlag (1995): 1-202
  • 4 Biondini M.. A three-dimensional spatial model for plant competition in an heterogeneous soil environment.  Ecological Modelling. (2001);  142 189-225
  • 5 Birch C. J., Andrieu B., Fournier C., Vos J., Room P.. Modelling kinetics of plant canopy architecture-concepts and applications.  European Journal of Agronomy. (2003);  19 519-533
  • 6 Bossel H.. TREEDYN3 forest simulation model.  Ecological Modelling. (1996);  90 187-227
  • 7 von Caemmerer S., Farquhar G. D.. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.  Planta. (1981);  153 376-387
  • 8 Eschenbach C.. Emergent properties modelled with the functional structural tree growth model ALMIS: computer experiments on resource gain and use.  Ecological Modelling. (2005);  186 470-488
  • 9 Farquhar G. D., von Caemmerer S., Berry J. A.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.  Planta. (1980);  149 78-90
  • 10 Garcia-Barrios L., Mayer-Foulkes D., Franco M., Urquijo-Vasquez G., Franco-Perez J.. Development and validation of a spatial explicit individual-based mixed crop growth model.  Bulletin of Mathematical Biology. (2001);  63 507-526
  • 11 Gayler S., Leser C., Priesack E., Treutter D.. Modelling the effect of environmental factors on the “trade-off” between growth and defensive compounds in young apple trees.  Trees. (2004);  18 363-371
  • 12 Gayler S., Priesack E.. PLATHO - documentation. http://www.sfb607.de/english/projects/c2/platho.pdf (2003)
  • 13 Gayler S., Wang E., Priesack E., Schaaf T., Maidl F.-X.. Modeling biomass growth, N-uptake and phenological development of potato crop.  Geoderma. (2002);  105 367-383
  • 14 Genard M., Baret F., Simon D.. A 3D peach canopy model used to evaluate the effect of tree architecture and density on photosynthesis at a range of scales.  Ecological Modelling. (2000);  128 197-209
  • 15 Grams T. E. E., Kozovits A. R., Reiter I. M., Winkler J. B., Sommerkorn M., Blaschke H., Häberle K.-H., Matyssek R.. Quantifying competitiveness in woody plants.  Plant Biology. (2002);  4 153-158
  • 16 Grant R.. Simulation of competition between barley and wild oats under different managements and climates.  Ecological Modelling. (1994);  71 269-287
  • 17 Grote R., Pretzsch H.. A model for individual tree development based on physiological processes.  Plant Biology. (2002);  4 167-180
  • 18 Hoagland D. R., Arnon D. I.. The water-culture method for growing plants without soil.  California Agricultural Experimental Station, Circular. (1950);  347 1-39
  • 19 Hodge A.. The plastic plant: root responses to heterogeneous supplies of nutrients.  New Phytologist. (2004);  162 9-24
  • 20 Hoffmann F.. FAGUS, a model for growth and development of beech.  Ecological Modelling. (1995);  83 327-348
  • 21 Hutson J. L., Wagenet R. J.. LEACHM: Leaching estimation and chemistry model: a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 3.0. Research Series No. 93-3. Ithaca, NY; Cornell University (1992)
  • 22 Ittersum M. K. V., Leffelaar P. A., Keulen H. V., Kropff M. J., Bastiaans L., Goudriaan J.. On approaches and applications of the Wageningen crop models.  European Journal of Agronomy. (2003);  18 201-234
  • 23 Janssen P. H. M.. Assessing sensitivities and uncertainties in models: a critical evaluation. Grasman, J. and Straten, G. V., ed. Predictability and Nonlinear Modelling in Natural Sciences and Economics. Dordrecht; Kluwer Academic Press (1994): 344-361
  • 24 Jones C. A., Kiniry J. R.. CERES-Maize. A Simulation Model of Maize Growth and Development. Texas; A & M University Press (1986): 1-194
  • 25 Kim D. S., Brain P., Marschall E. J. P., Caseley J. C.. Modelling herbicide dose and weed density effects on crop : weed competition.  Weed Research. (2002);  42 1-13
  • 26 Kiniry J. R., Williams J. R., Gassman P. W., Debaeke P.. A general, process-oriented model for two competing plant species.  Transactions of the ASAE. (1992);  35 801-810
  • 27 Kozovits A. R., Matyssek R., Blaschke H., Göttlein A., Grams T. E. E.. Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and O3 levels throughout two subsequent growing seasons.  Global Change Biology. (2005 a);  11 1387-1401
  • 28 Kozovits A. R., Matyssek R., Winkler J. B., Göttlein A., Blaschke H., Grams T. E. E.. Above-ground space sequestration determines competitive success in juvenile beech and spruce trees.  New Phytologist. (2005 b);  167 181-196
  • 29 Kropff M. J., van Laar H. H.. Modelling Crop-Weed Interactions. Wallingford, UK; CAB International (1993): 1-274
  • 30 Kropff M. J., Lotz L. A. P.. Empirical models for crop-weed interactions. Kropff, M. J. and van Laar, H. H., eds. Modelling Crop-Weed Interactions. Wallingford, UK; CAB International (1993): 9-24
  • 31 Kurth W.. Towards universality of growth grammars: models of Bell, Pagès, and Takenaka revisited.  Annals of Forest Science. (2000);  57 543-554
  • 32 Lafolie F., Bruckler L., Ozier-Lafontaine H., Toutnebize R., Mollier A.. Modelling soil-root water transport and competition for single and mixed crops.  Plant and Soil. (1999);  210 127-143
  • 33 Liu X., Kozovits A. R., Grams T. E. E., Blaschke H., Rennenberg H., Matyssek R.. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech.  Tree Physiology. (2004);  24 1045-1055
  • 34 Loague K., Green R. E.. Statistical and graphical methods for evaluating solute transport models: overview and application.  Journal of Contamant Hydrology. (1991);  7 51-73
  • 35 Luedemann G., Matyssek R., Fleischmann F., Grams T. E. E.. Acclimation to ozone affects, host/pathogen interaction, and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infested with Phytophthora citricola. .  Plant Biology. (2005);  7 640-649
  • 36 Matyssek R., Agerer R., Ernst D., Munch J. C., Osswald W., Pretzsch H., Priesack E., Schnyder H., Treutter D.. The plant's capacity in regulating resource demand.  Plant Biology. (2005);  7 560-580
  • 37 McDonald A. J., Riha S. J.. Model of crop : weed competition applied to maize : abutilon theophrasti interactions. I. Model description and evaluation.  Weed Research. (1999);  39 355-369
  • 38 Monteith J. L.. Evaporation and surface temperature.  Quarterly Journal of the Royal Meteorological Society. (1981);  107 1-27
  • 39 Muth C. C., Bazzaz F. A.. Tree canopy displacement at forest gap edges.  Canadian Journal of Forest Research. (2002);  32 247-254
  • 40 Payer H.-D., Blodow P., Köfferlein M., Lippert M., Schmolke W., Seckmeyer G., Seidlitz H., Strube D., Thiel S.. Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. Schulze, E.-D. and Mooney, H. A., eds. Design and Execution of Experiments on CO2 Enrichment. Brussels; Commission European Communities (1993): 127-145
  • 41 Penning De Vries F. W. T., Jansen D. M., Berge H. F. M. T., Bakema A.. Simulation of ecophysiological processes of growth in several annual crops. Wageningen, The Netherlands; Pudoc (1989): 1-271
  • 42 Perttunen J., Sievänen R., Nikinmaa E.. LIGNUM: a model combining the structure and the functioning of trees.  Ecological Modelling. (1998);  108 189-198
  • 43 Poorter H.. Construction costs and payback time of biomass: a whole plant perspective. Roy, J. and Garnier, E., eds. A Whole Plant Perspective on Carbon-Nutrient Interactions. The Hague, The Netherlands; Academic Publishing (1994): 111-127
  • 44 Porté A., Bartelink H. H.. Modelling mixed forest growth: a review of models for forest management.  Ecological Modelling. (2002);  150 141-188
  • 45 Renton M., Kaitaniemi P., Hanan J.. Functional-structural plant modelling using a combination of architectural analysis, L-systems and a canonical model of function.  Ecological Modelling. (2005);  184 277-298
  • 46 Ritchie J. T., Godwin D. C., Otter-Nacke S.. CERES-WHEAT. A simulation model of wheat growth and development. College Station, TX, USA; A & M University Press (1987)
  • 47 Schippers P., Kropff M. J.. Competition for light and nitrogen among grassland species: a simulation analysis.  Functional Ecology. (2001);  15 155-164
  • 48 Schmid I.. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech.  Basic and Applied Ecology. (2002);  3 339-346
  • 49 Simunek J., Huang K., Van Genuchten M. T.. The HYDRUS code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 6.0. Techn. Report 144, U.S. Salinity Laboratory, USDA, ARS. (1998)
  • 50 Stenger R., Priesack E., Barkle G., Sperr C.. Expert-N, a tool for simulating nitrogen and carbon dynamics in the soil-plant-atmosphere system. NZ Land Treatment Collective. Proceedings Technical Session: Modelling of Land Treatment Systems. New Plymouth, 14 - 15 Oct. (1999): 19-28
  • 51 Thornley J. H. M., Johnson I. R.. Plant and Crop Modelling. New York; Oxford University Press (1990): 1-669
  • 52 Villalobos F. J., Hall A. J.. OILCROP‐SUN V5.1. Technical documentation. http://nowlin.css.msu.edu/sunflower_doc/sunflower51.pdf (1989)
  • 53 Wang E.. Development of a Generic Process-Oriented Model for Simulation of Crop Growth. München; Herbert Utz Verlag Wissenschaft (1997): 1-195
  • 54 Wang E., Engel T.. Simulation of growth, water and nitrogen uptake of a wheat crop using the SPASS model.  Environmental Modelling and Software. (2002);  17 387-402
  • 55 Weiner J., Fishman L.. Competition and allometry in Kochia scoparia. .  Annals of Botany. (1994);  73 263-271
  • 56 Weiner J., Stoll P., Muller-Landau H., Jasentuliyana A.. The effect of density, spatial pattern and competitive symmetry on size variation in simulated plant populations.  The American Naturalist. (2001);  158 438-450
  • 57 Wilson B. J., Wright K. J.. Predicting the growth and competitive effects of annual weeds in wheat.  Weed Research. (1990);  30 201-211
  • 58 Wohlfahrt G., Bahn M., Tappeiner U., Cernusca A.. A multi-component, multi-species model of vegetation-atmosphere CO2 and energy exchange for mountain grasslands.  Agricultural and Forest Meteorology. (2001);  106 261-287

S. Gayler

Institute of Soil Ecology
GSF - National Research Center for Environment and Health

Ingolstädter Landstraße 1

85764 Neuherberg

Email: gayler@gsf.de

Editor: H. Rennenberg

    >