Abstract
The moss Physcomitrella patens has become a powerful model system in modern plant biology. Highly standardized cell
culture techniques, as well as the necessary tools for computational biology, functional
genomics and proteomics have been established. Large EST collections are available
and the complete moss genome will be released soon. A simple body plan and the small
number of different cell types in Physcomitrella facilitate the study of developmental processes. In the filamentous juvenile moss
tissue, developmental decisions rely on the differentiation of single cells. Developmental
steps are controlled by distinct phytohormones and integration of environmental signals.
Especially the phytohormones auxin, cytokinin, and abscisic acid have distinct effects
on early moss development. In this article, we review current knowledge about phytohormone
influences on early moss development in an attempt to fully unravel the complex regulatory
signal transduction networks underlying the developmental decisions of single plant
cells in a holistic systems biology approach.
Key words
Bryophyte - cell cycle - homologous recombination - cell differentiation - auxin -
cytokinin - ABA
References
- 1
Ashton N. W., Grimsely N. H., Cove D. J..
Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants.
Planta.
(1979);
144
427-435
- 2
Bierfreund N. M., Reski R., Decker E. L..
Use of an inducible reporter gene system for the analysis of auxin distribution in
the moss Physcomitrella patens.
Plant Cell Reports.
(2003);
21
1143-1152
- 3
Bierfreund N. M., Tintelnot S., Reski R., Decker E. L..
Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens.
Journal of Plant Physiology.
(2004);
161
823-835
- 4
Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M.,
Palme K., Scheres B..
The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.
Nature.
(2005);
433
39-44
- 5
Bopp M., Atzorn R..
The morphogenetic system of the moss protonema.
Cryptogamic Botany.
(1992);
3
3-10
- 6
Chandler P. M., Robertson M..
Gene expression regulated by abscisic acid and its relation to stress tolerance.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1994);
45
113-141
- 7
Cove D. J., Knight C. D..
The moss Physcomitrella patens, a model system with potential for the study of plant reproduction.
Plant Cell.
(1993);
5
1483-1488
- 8
Decker E. L., Reski R..
The moss bioreactor.
Current Opinion in Plant Biology.
(2004);
7
166-170
- 9
den Boer B. G., Murray J. A..
Triggering the cell cycle in plants.
Trends in Cell Biology.
(2000);
10
245-250
- 10
Ebel C., Mariconti L., Gruissem W..
Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte.
Nature.
(2004);
429
776-780
- 11
Egener T., Granado J., Guitton M. C., Hohe A., Holtorf H., Lucht J. M., Rensing S. A.,
Schlink K., Schulte J., Schween G., Zimmermann S., Duwenig E., Rak B., Reski R..
High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.
BMC Plant Biology.
(2002);
2
6
- 12
Ehness R., Ecker M., Godt D. E., Roitsch T..
Glucose and stress independently regulate source and sink metabolism and defense mechanisms
via signal transduction pathways involving protein phosphorylation.
Plant Cell.
(1997);
9
1825-1841
- 13
Frank W., Decker E. L., Reski R..
Molecular tools to study Physcomitrella patens.
Plant Biology.
(2005 a);
7
220-227
- 14
Frank W., Ratnadewi D., Reski R..
Physcomitrella patens is highly tolerant against drought, salt and osmotic stress.
Planta.
(2005 b);
220
384-394
- 15
Friml J., Wisniewska J., Benkova E., Mendgen K., Palme K..
Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.
Nature.
(2002);
415
806-809
- 16
Grefen C., Harter K..
Plant two-component systems: principles, functions, complexity and cross talk.
Planta.
(2004);
219
733-742
- 71 Guilfoyle T. J..
Auxin-regulated genes and promoters. Hooykaas, P. P. J., Hall, M. A., and Libbenga, K. R., eds. Biochemistry and Molecular
Biology of Plant Hormones. New York; Elsevier (1999): 423-459
- 17
Gutierrez C..
The retinoblastoma pathway in plant cell cycle and development.
Current Opinion in Plant Biology.
(1998);
1
492-497
- 18
Hagen G., Guilfoyle T..
Auxin-responsive gene expression: genes, promoters and regulatory factors.
Plant Molecular Biology.
(2002);
49
373-385
- 19
Hagen G., Martin G., Li Y., Guilfoyle T. J..
Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants.
Plant Molecular Biology.
(1991);
17
567-579
- 20
Heintz D., Wurtz V., High A. A., Van Dorsselaer A., Reski R., Sarnighausen E..
An efficient protocol for the identification of protein phosphorylation in a seedless
plant, sensitive enough to detect members of signalling cascades.
Electrophoresis.
(2004);
25
1149-1159
- 21
Hohe A., Rensing S. A., Mildner M., Lang D., Reski R..
Day length and temperature strongly influence sexual reproduction and expression of
a novel MADS‐box gene in the moss Physcomitrella patens.
Plant Biology.
(2002);
4
595-602
- 22
Hohe A., Reski R..
A tool for understanding homologous recombination in plants.
Plant Cell Reports.
(2003);
21
1135-1142
- 23
Hohe A., Reski R..
From axenic spore germination to molecular farming. One century of bryophyte in vitro culture.
Plant Cell Reports.
(2005);
23
513-521
- 24
Hsieh H. L., Okamoto H., Wang M., Ang L. H., Matsui M., Goodman H., Deng X. W..
FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream
regulator COP1 in light control of Arabidopsis development.
Genes and Development.
(2000);
14
1958-1970
- 25
Huether C. M., Lienhart O., Baur A., Stemmer C., Gorr G., Reski R., Decker E. L..
Glyco-engineering of moss lacking plant-specific sugar residues.
Plant Biology.
(2005);
7
292-299
- 26
Johri M. M., Desai S..
Auxin regulation of caulonema formation in moss protonema.
Nature (London), New Biology.
(1973);
245
223-224
- 27
Kamisugi Y., Cuming A. C..
The evolution of the abscisic acid-response in land plants: comparative analysis of
group 1 LEA gene expression in moss and cereals.
Plant Molecular Biology.
(2005);
59
723-737
- 28
Knight C. D., Sehgal A., Atwal K., Wallace J. C., Cove D. J., Coates D., Quatrano R. S.,
Bahadur S., Stockley P. G., Cuming A. C..
Molecular responses to abscisic acid and stress are conserved between moss and cereals.
Plant Cell.
(1995);
7
499-506
- 29
Koprivova A., Stemmer C., Altmann F., Hoffmann A., Kopriva S., Gorr G., Reski R.,
Decker E. L..
Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans.
Plant Biotechnology Journal.
(2004);
2
517-523
- 30
Kroemer K., Reski R., Frank W..
Abiotic stress response in the moss Physcomitrella patens: evidence for an evolutionary alteration in signaling pathways in land plants.
Plant Cell Reports.
(2004);
22
864-870
- 31
Kwak S. H., Lee S. H..
The requirements for Ca2+, protein phosphorylation, and dephosphorylation for ethylene signal transduction
in Pisum sativum L.
Plant and Cell Physiology.
(1997);
38
1142-1149
- 32
Lang D., Eisinger J., Reski R., Rensing S. A..
Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in
mosses.
Plant Biology.
(2005);
7
238-250
- 33
Lorenz S., Tintelnot S., Reski R., Decker E. L..
Cyclin D-knockout uncouples developmental progression from sugar availability.
Plant Molecular Biology.
(2003);
53
227-236
- 34
Minami A., Nagao M., Arakawa K., Fujikawa S., Takezawa D..
Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes.
Jornal of Plant Physiology.
(2003);
160
475-483
- 35
Minami A., Nagao M., Ikegami K., Koshiba T., Arakawa K., Fujikawa S., Takezawa D..
Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not
with increase in level of endogenous abscisic acid.
Planta.
(2005);
220
414-423
- 36
Nagao M., Minami A., Arakawa K., Fujikawa S., Takezawa D..
Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble
sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens.
Journal of Plant Physiology.
(2005);
162
169-180
- 37
Nakazawa M., Yabe N., Ichikawa T., Yamamoto Y. Y., Yoshizumi T., Hasunuma K., Matsui M..
DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation
and lateral root formation, and positively regulates the light response of hypocotyl
length.
The Plant Journal.
(2001);
25
213-221
- 38
Nishiyama T., Fujita T., Shin I. T., Seki M., Nishide H., Uchiyama I., Kamiya A.,
Carninci P., Hayashizaki Y., Shinozaki K., Kohara Y., Hasebe M..
Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution.
Proceedings of the National Acadamy of Sciences of the USA.
(2003);
100
8007-8012
- 39
Oakenfull E. A., Riou-Khamlichi C., Murray J. A..
Plant D-type cyclins and the control of G1 progression.
Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences.
(2002);
357
749-760
- 40
Olsson T., Thelander M., Ronne H..
A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating
enzyme in the moss Physcomitrella patens.
Journal of Biological Chemistry.
(2003);
278
44439-44447
- 41
Paponov I. A., Teale W. D., Trebar M., Blilou I., Palme K..
The PIN auxin efflux facilitators: evolutionary and functional perspectives.
Trends in Plant Sciences.
(2005);
10
170-177
- 42
Rensing S. A., Rombauts S., Van de Peer Y., Reski R..
Moss transcriptome and beyond.
Trends in Plant Sciences.
(2002);
7
535-538
- 43
Repp A., Mikami K., Mittmann F., Hartmann E..
Phosphoinositide-specific phospholipase C is involved in cytokinin and gravity responses
in the moss Physcomitrella patens.
The Plant Journal.
(2004);
40
250-259
- 44
Reski R..
Development, genetics and molecular biology of mosses.
Botanica Acta.
(1998);
111
1-15
- 45
Reski R., Abel W. O..
Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine.
Planta.
(1985);
165
354-358
- 46
Reutter K., Atzorn R., Hadeler B., Schmülling T., Reski R..
Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division.
Planta.
(1998);
206
196-203
- 47
Riou-Khamlichi C., Huntley R., Jacqmard A., Murray J. A..
Cytokinin activation of Arabidopsis cell division through a D-type cyclin.
Science.
(1999);
283
1541-1544
- 48
Riou-Khamlichi C., Menges M., Healy J. M., Murray J. A..
Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression.
Molecular and Cellular Biology.
(2000);
20
4513-4521
- 49
Rose S., Rubery P. H., Bopp M..
The mechanism of auxin uptake and accumulation in moss protonema.
Physiologia Plantarum.
(1983);
58
52-56
- 50
Sakakibara K., Nishiyama T., Sumikawa N., Kofuji R., Murata T., Hasebe M..
Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development
of the moss Physcomitrella patens.
Development.
(2003);
130
4835-4846
- 51
Sarnighausen E., Wurtz V., Heintz D., Van Dorsselaer A., Reski R..
Mapping of the Physcomitrella patens proteome.
Phytochemistry.
(2004);
65
1589-1607
- 52
Schaefer D. G..
A new moss genetics: targeted mutagenesis in Physcomitrella patens.
Annual Review of Plant Biology.
(2002);
53
477-501
- 53
Schipper O., Schaefer D., Reski R., Fleming A..
Expansins in the bryophyte Physcomitrella patens.
Plant Molecular Biology.
(2002);
50
789-802
- 54
Schnepf E., Hrdina B., Lehne A..
Spore germination, development of the microtubule system and protonema cells morphogenesis
in the moss, Funaria hygrometrica: effects of inhibitors and of growth substances.
Biochemie und Physiologie der Pflanzen.
(1982);
177
461-482
- 55
Schnepf E., Reinhard C..
Brachycytes in Funaria protonemate: induction by abscisic acid and fine structure.
Journal of Plant Physiology.
(1997);
151
166-175
- 56
Schulz P., Reski R., Maldiney R., Laloue M., v. Schwartzenberg K..
Kinetics of cytokinin production and bud formation in Physcomitrella: analysis of a wild type, a developmental mutant and two of its ipt transgenics.
Journal of Plant Physiology.
(2000);
156
768-774
- 57
Schween G., Egener T., Fritzowsky D., Granado J., Guitton M. C., Hartmann N., Hohe A.,
Holtorf H., Lang D., Lucht J. M., Reinhard C., Rensing S. A., Schlink K., Schulte J.,
Reski R..
Large-scale analysis of 73 329 Physcomitrella plants transformed with different gene disruption libraries: production parameters
and mutant phenotypes.
Plant Biology.
(2005);
7
228-237
- 58
Schween G., Hohe A., Koprivova A., Reski R..
Effects of nutrients, cell density and culture techniques on protoplast regeneration
and early protonema development in a moss, Physcomitrella patens.
Journal of Plant Physiology.
(2003);
160
209-212
- 59
Staswick P. E., Serban B., Rowe M., Tiryaki I., Maldonado M. T., Maldonado M. C.,
Suza W..
Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid.
Plant Cell.
(2005);
17
616-627
- 60
Staswick P. E., Tiryaki I., Rowe M. L..
Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on
jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation.
Plant Cell.
(2002);
14
1405-1415
- 61
Strepp R., Scholz S., Kruse S., Speth V., Reski R..
Plant nuclear gene knockout reveals a role in plastid division for the homolog of
the bacterial cell division protein FtsZ, an ancestral tubulin.
Proceedings of the National Academy of Sciences of the USA.
(1998);
95
4368-4373
- 62
Takase T., Nakazawa M., Ishikawa A., Kawashima M., Ichikawa T., Takahashi N., Shimada H.,
Manabe K., Matsui M..
ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation.
The Plant Journal.
(2004);
37
471-483
- 63
Takase T., Nakazawa M., Ishikawa A., Manabe K., Matsui M..
DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation.
Plant and Cell Physiology.
(2003);
44
1071-1080
- 64
Tanaka S., Mochizuki N., Nagatani A..
Expression of the AtGH3a gene, an Arabidopsis homologue of the soybean GH3 gene, is regulated by phytochrome B.
Plant and Cell Physiology.
(2002);
43
281-289
- 65
Thelander M., Olsson T., Ronne H..
Effect of the energy supply on filamentous growth and development in Physcomitrella patens.
Journal of Experimental Botany.
(2005);
56
653-662
- 66
Vandepoele K., Raes J., De Veylder L., Rouze P., Rombauts S., Inze D..
Genome-wide analysis of core cell cycle genes in Arabidopsis.
Plant Cell.
(2002);
14
903-916
- 67
von Schwartzenberg K., Kruse S., Reski R., Moffatt B., Laloue M..
Cloning and characterization of an adenosine kinase from Physcomitrella involved in cytokinin metabolism.
The Plant Journal.
(1998);
13
249-257
- 68
Woodward A. W., Bartel B..
Auxin: regulation, action, and interaction.
Annals of Botany (London).
(2005);
95
707-735
- 69
Wu G., Truksa M., Datla N., Vrinten P., Bauer J., Zank T., Cirpus P., Heinz E., Qiu X..
Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty
acids in plants.
Nature Biotechnology.
(2005);
23
1013-1017
- 70
Yu L. R., Conrads T. P., Uo T., Kinoshita Y., Morrison R. S., Lucas D. A., Chan K. C.,
Blonder J., Issaq H. J., Veenstra T. D..
Global analysis of the cortical neuron proteome.
Molecular and Cellular Proteomics.
(2004);
3
896-907
R. Reski
Faculty of Biology
Plant Biotechnology
University of Freiburg
Schänzlestraße 1
79104 Freiburg
Germany
Email: ralf.reski@biologie.uni-freiburg.de
Editor: H. Rennenberg