Semin Plast Surg 2005; 19(3): 229-239
DOI: 10.1055/s-2005-919718
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Mesenchymal Stem Cell Transplantation for Tissue Repair

Frank P. Barry1 , J. Mary Murphy1 , Timothy O'Brien1 , Bernard Mahon2
  • 1Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
  • 2Regenerative Medicine Institute, Institute of Immunology, National University of Ireland, Maynooth, Ireland
Further Information

Publication History

Publication Date:
11 October 2005 (online)

ABSTRACT

There are several characteristics of stem cells that make them unique in comparison with other mammalian cells. First, they exist as unspecialized cells lacking tissue-specific characteristics and they maintain this undifferentiated phenotype until exposed to appropriate signals. Second, they have the capacity for extensive self-renewal. Third, under the influence of local biological signals they can differentiate into specialized cells with a phenotype fully distinct from that of the precursor. Mesenchymal stem cells in the bone marrow apparently conform to this definition. These cells, as their name implies, are the precursors of cells of mesenchymal lineage, including cartilage, bone, fat, muscle, and tendon. They are easily isolated from bone marrow and adipose tissue and from several other sources. At this point we have an incomplete understanding of the regulation of differentiation, commitment, and plasticity of the mesenchymal cell population isolated from marrow. We can identify several of the signals that activate the cells to differentiate along specific cell pathways and we can describe the phenotype of the fully differentiated cells, but we understand little of the intermediate steps. In addition, we know nothing about the reversibility of these pathways or the ability of differentiated cells to revert to a stem cell phenotype. Nor do we understand transdifferentiation or the ability of cells to differentiate horizontally from one lineage to another. Furthermore, there is little clarity surrounding the niche, or tissue-specific microenvironment, in which the cells reside. Despite the lack of understanding of these cells and their natural history, it is clear that they have therapeutic potential in a broad variety of clinical applications. There are many disease targets for which mesenchymal stem cell therapy is being assessed in both preclinical and clinical studies. This article assesses our current understanding of the natural history of mesenchymal cell populations in marrow and other tissues, their control, proliferation, and differentiation, and attempts to assess accurately the status of their therapeutic evaluation in different diseases.

REFERENCES

  • 1 Friedenstein A J, Piatetzky-Shapiro I I, Petrakova K V. Osteogenesis in transplants of bone marrow cells.  J Embryol Exp Morphol. 1966;  16 381-390
  • 2 Kadiyala S, Young R G, Thiede M A, Bruder S P. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.  Cell Transplant. 1997;  6 125-134
  • 3 Shake J G, Gruber P J, Baumgartner W A et al.. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects.  Ann Thorac Surg. 2002;  73 1919-1926
  • 4 Ringe J, Kaps C, Schmitt B et al.. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages.  Cell Tissue Res. 2002;  307 321-327
  • 5 Murphy J M, Fink D J, Hunziker E B, Barry F P. Stem cell therapy in a caprine model of osteoarthritis.  Arthritis Rheum. 2003;  48 3464-3474
  • 6 Pittenger M F, Mackay A M, Beck S C et al.. Multilineage potential of adult human mesenchymal stem cells.  Science. 1999;  284 143-147
  • 7 Lennon D P, Haynesworth S E, Young R G, Dennis J E, Caplan A I. A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells.  Exp Cell Res. 1995;  219 211-222
  • 8 Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander A R. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use.  Exp Hematol. 2004;  32 1212-1225
  • 9 Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow.  Endocrinology. 1997;  138 4456-4462
  • 10 Phinney D G, Kopen G, Isaacson R L, Prockop D J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation.  J Cell Biochem. 1999;  72 570-585
  • 11 Bianchi G, Banfi A, Mastrogiacomo M et al.. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2.  Exp Cell Res. 2003;  287 98-105
  • 12 Ortiz L A, Gambelli F, McBride C et al.. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects.  Proc Natl Acad Sci USA. 2003;  100 8407-8411
  • 13 Jiang Y, Jahagirdar B N, Reinhardt R L et al.. Pluripotency of mesenchymal stem cells derived from adult marrow.  Nature. 2002;  418 41-49
  • 14 Lodie T A, Blickarz C E, Devarakonda T J et al.. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction.  Tissue Eng. 2002;  8 739-751
  • 15 Barry F P, Murphy J M. Mesenchymal stem cells: clinical applications and biological characterization.  Int J Biochem Cell Biol. 2004;  36 568-584
  • 16 Barry F, Boynton R E, Liu B, Murphy J M. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components.  Exp Cell Res. 2001;  268 189-200
  • 17 Suzawa M, Takada I, Yanagisawa J et al.. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade.  Nat Cell Biol. 2003;  5 224-230
  • 18 Taylor S M, Jones P A. Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine.  J Cell Physiol. 1982;  111 187-194
  • 19 Wakitani S, Saito T, Caplan A I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.  Muscle Nerve. 1995;  18 1417-1426
  • 20 Gussoni E, Soneoka Y, Strickland C D et al.. Dystrophin expression in the mdx mouse restored by stem cell transplantation.  Nature. 1999;  401 390-394
  • 21 Toma C, Pittenger M F, Cahill K S, Byrne B J, Kessler P D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.  Circulation. 2002;  105 93-98
  • 22 Woodbury D, Reynolds K, Black I B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis.  J Neurosci Res. 2002;  69 908-917
  • 23 Woodbury D, Schwarz E J, Prockop D J, Black I B. Adult rat and human bone marrow stromal cells differentiate into neurons.  J Neurosci Res. 2000;  61 364-370
  • 24 Sanchez-Ramos J R. Neural cells derived from adult bone marrow and umbilical cord blood.  J Neurosci Res. 2002;  69 880-893
  • 25 Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al.. Adult bone marrow stromal cells differentiate into neural cells in vitro.  Exp Neurol. 2000;  164 247-256
  • 26 Deng W, Obrocka M, Fischer I, Prockop D J. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP.  Biochem Biophys Res Commun. 2001;  282 148-152
  • 27 Kohyama J, Abe H, Shimazaki T et al.. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent.  Differentiation. 2001;  68 235-244
  • 28 Tabbara I A, Zimmerman K, Morgan C, Nahleh Z. Allogeneic hematopoietic stem cell transplantation: complications and results.  Arch Intern Med. 2002;  162 1558-1566
  • 29 Orlic D, Kajstura J, Chimenti S et al.. Bone marrow cells regenerate infarcted myocardium.  Nature. 2001;  410 701-705
  • 30 Stamm C, Westphal B, Kleine H D et al.. Autologous bone-marrow stem-cell transplantation for myocardial regeneration.  Lancet. 2003;  361 45-46
  • 31 Deb A, Wang S, Skelding K A, Miller D, Simper D, Caplice N M. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients.  Circulation. 2003;  107 1247-1249
  • 32 Saito T, Kuang J Q, Bittira B, Al-Khaldi A, Chiu R C. Xenotransplant cardiac chimera: immune tolerance of adult stem cells.  Ann Thorac Surg. 2002;  74 19-24
  • 33 Shihabuddin L S, Horner P J, Ray J, Gage F H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus.  J Neurosci. 2000;  20 8727-8735
  • 34 Teng Y D, Lavik E B, Qu X et al.. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells.  Proc Natl Acad Sci USA. 2002;  99 3024-3029
  • 35 Kim J H, Auerbach J M, Rodriguez-Gomez J A et al.. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease.  Nature. 2002;  418 50-56
  • 36 Mezey E, Key S, Vogelsang G, Szalayova I, Lange G D, Crain B. Transplanted bone marrow generates new neurons in human brains.  Proc Natl Acad Sci USA. 2003;  100 1364-1369
  • 37 Muschler G F, Nitto H, Matsukura Y et al.. Spine fusion using cell matrix composites enriched in bone marrow-derived cells.  Clin Orthop. 2003;  407 102-118
  • 38 Quarto R, Mastrogiacomo M, Cancedda R et al.. Repair of large bone defects with the use of autologous bone marrow stromal cells.  N Engl J Med. 2001;  344 385-386
  • 39 Krebsbach P H, Mankani M H, Satomura K, Kuznetsov S A, Robey P G. Repair of craniotomy defects using bone marrow stromal cells.  Transplantation. 1998;  66 1272-1278
  • 40 Ponticiello M S, Schinagl R M, Kadiyala S, Barry F P. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy.  J Biomed Mater Res. 2000;  52 246-255
  • 41 Solchaga L A, Gao J, Dennis J E et al.. Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle.  Tissue Eng. 2002;  8 333-347
  • 42 Horwitz E M, Prockop D J, Fitzpatrick L A et al.. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta.  Nat Med. 1999;  5 309-313
  • 43 Koc O N, Day J, Nieder M, Gerson S L, Lazarus H M, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH).  Bone Marrow Transplant. 2002;  30 215-222
  • 44 Fouillard L, Bensidhoum M, Bories D et al.. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma.  Leukemia. 2003;  17 474-476
  • 45 Bruder S P, Kraus K H, Goldberg V M, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects.  J Bone Joint Surg. 1998;  80 985-996
  • 46 Bruder S P, Kurth A A, Shea M et al.. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells.  J Orth Res. 1998;  16 155-162
  • 47 De Kok I J, Peter S J, Archambault M et al.. Investigation of allogeneic mesenchymal stem cell-based alveolar bone formation: preliminary findings.  Clin Oral Implants Res. 2003;  14 481-489
  • 48 Young R G, Butler D L, Weber W et al.. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair.  J Orth Res. 1998;  16 406-413
  • 49 Stamm C, Westphal B, Kleine H et al.. Autologous bone-marrow stem-cell transplantation for myocardial regeneration.  Lancet. 2003;  361 45-46
  • 50 Murphy J M, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis.  Arthritis Rheum. 2002;  46 704-713
  • 51 Bartholomew A, Sturgeon C, Siatskas M et al.. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.  Exp Hematol. 2002;  30 42-48
  • 52 Glennie S, Soeiro I, Dyson P J, Lam E W, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells.  Blood. 2005;  105 2821-2827
  • 53 Gorczynski R M, Hadidi S, Yu G, Clark D A. The same immunoregulatory molecules contribute to successful pregnancy and transplantation.  Am J Reprod Immunol. 2002;  48 18-26
  • 54 Parrott J A, Skinner M K. Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and Kit ligand during ovarian follicular development.  Endocrinology. 1998;  139 2240-2245
  • 55 Nilsson E, Skinner M K. Cellular interactions that control primordial follicle development and folliculogenesis.  J Soc Gynecol Investig. 2001;  8 S17-S20
  • 56 Honig A, Rieger L, Kapp M, Sutterlin M, Dietl J, Kammerer U. Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance.  J Reprod Immunol. 2004;  61 79-86
  • 57 Maitra B, Szekely E, Gjini K et al.. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation.  Bone Marrow Transplant. 2004;  33 597-604
  • 58 Jorgensen C, Djouad F, Apparailly F, Noel D. Engineering mesenchymal stem cells for immunotherapy.  Gene Ther. 2003;  10 928-931
  • 59 Deng W, Han Q, Liao L et al.. Allogeneic bone marrow-derived flk-1 + Sca-1-mesenchymal stem cells leads to stable mixed chimerism and donor-specific tolerance.  Exp Hematol. 2004;  32 861-867
  • 60 Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses.  Blood. 2005;  105 1815-1822
  • 61 Potian J A, Aviv H, Ponzio N M, Harrison J S, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens.  J Immunol. 2003;  171 3426-3434
  • 62 Krampera M, Glennie S, Dyson J et al.. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide.  Blood. 2003;  101 3722-3729
  • 63 Jiang  X X, Zhang Y, Liu B et al.. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells.  Blood. 2005;  105 4120-4126
  • 64 Grinnemo K H, Mansson A, Dellgren G et al.. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium.  J Thorac Cardiovasc Surg. 2004;  127 1293-1300

Frank BarryPh.D. 

Regenerative Medicine Institute, National Centre for Biomedical Engineering Science

National University of Ireland, Galway, Ireland

    >