Aktuelle Neurologie 2006; 33(4): 218-231
DOI: 10.1055/s-2005-915380
Kognitive Neurologie
© Georg Thieme Verlag KG Stuttgart · New York

Zerebrale Hemisphärenlateralität der Sprachlautwahrnehmung: Klinische und funktionell-bildgebende Befunde

Functional Neuroanatomy of Speech Sound Perception: Clinical and Imaging DataH.  Ackermann1 , I.  Hertrich1 , W.  Lutzenberger2 , K.  Mathiak3
  • 1Abteilung Allgemeine Neurologie, Hertie Institut für Klinische Hirnforschung, Universität Tübingen
  • 2MEG Zentrum, Universität Tübingen
  • 3Klinik für Psychiatrie und Psychotherapie, Rheinisch-Westfälische Technische Hochschule Aachen
Further Information

Publication History

Publication Date:
24 January 2006 (online)

Zusammenfassung

Die „core functions” sprachlicher Kommunikation, d. h. die Fähigkeit, phonologisch und syntaktisch wohlgeformte Sätze zu bilden und zu verstehen, sind zumindest bei rechtshändigen erwachsenen Menschen vorwiegend an die linke Hirnhälfte gebunden. Unter anderem dürften sich im Bereich der sprachdominanten Hemisphäre auch auditive Wortformen, d. h. die abstrakte Lautstruktur der Einträge des mentalen Lexikons, repräsentiert finden. Demgegenüber wird auf der Grundlage klinischer Daten eine weitgehend bilateral-symmetrische Verarbeitung der akustischen Korrelate der Konsonanten und Vokale einer Sprache (linguistische „information bearing elements”) im Bereich des Temporallappens angenommen. Dieses traditionelle neurolinguistische Modell beinhaltet somit eine strikte funktionell-neuroanatomische Trennung der zentral-auditiven und der linguistisch-kategorialen Ebene der Sprachlautwahrnehmung. Neuere klinische, psychoakustische und funktionell-bildgebende Befunde erfordern jedoch eine Erweiterung dieses Konzept in wenigstens zwei Hinsichten: (a) Schon auf der Ebene der auditiven Mismatch-Antworten, die als elektrophysiologisches Korrelat sensorischer Gedächtnisleistungen gelten, bilden sich phonetisch-linguistische Strukturen ab, und es zeigt sich ein Lateralitätseffekt der Verarbeitung von Sprachlauten und Silben („prälexikalische Inputrepräsentationen”) zugunsten der linken Hirnhälfte. (b) Neben der Hörrinde beider Hirnhälften und dem posterioren perisylviischen Kortex der sprachdominanten Hemisphäre scheinen unter bestimmten Bedingungen auch inferior-dorsolaterale Anteile des linken Frontalhirns und die rechte Kleinhirnhemisphäre an der Sprachlautwahrnehmung beteiligt zu sein und insbesondere Dauerparameter des akustischen Sprachsignals zu enkodieren. Psychoakustische und elektrophysiologische Befunde weisen auf eine effizientere „Auflösung” der Zeitstruktur sprachlicher und nichtsprachlicher auditiver Signale im Bereich der linken Hirnhälfte hin. Vor diesem Hintergrund dürften zumindest einige Lateralitätseffekte der Sprachlautwahrnehmung domänübergreifende (supramodulare) Operationen widerspiegeln. Im Verlauf der Evolution menschlicher Lautsprache könnte diese funktionelle Asymmetrie zentral-auditiver Verarbeitung über einen „Schneeballeffekt” zu Lateralitätseffekten kognitiver Komponenten der Sprachverarbeitung wie des Wortformlexikons geführt haben, die dann „top down” auch Seitunterschiede der Enkodierung zeit-unkritischer Parameter des akustischen Signals hervorrufen.

Abstract

Clinical and experimental data indicate that the „core functions” of speech communication, i. e., the ability to produce and to comprehend phonologically and syntactically well-formed sentences, are bound primarily to the left hemisphere of the brain, at least in right-handed adult individuals. Among others, the language-dominant perisylvian area seems predominantly to process and/or to store abstract representations of the sound structure of lexical items (auditory word forms). By contrast, the superior aspects of both temporal lobes have been assumed to subserve the encoding of the acoustic correlates of the consonant and vowel sounds of a language (linguistic „information bearing elements” of the speech signal). As a consequence, these findings suggest a strict functional-neuroanatomic separation of the central-auditory and the linguistic-categorical level of speech perception. More recent functional-imaging data call, however, for a revision of this concept in at least two regards: (a) Auditory mismatch-responses, considered an electrophysiological correlate of sensory memory operations, reflect phonetic-linguistic data structures and may display left-hemisphere laterality effects during the processing of speech sounds and syllables („prelexical input representations”). (b) Besides bilateral acoustic cortex and posterior parts of the language-dominant perisylvian area, inferior-dorsolateral regions of the left frontal lobe and superior aspects of the right cerebellar hemisphere may, under specific conditions, participate in the encoding of durational parameters of the acoustic speech signal. Psychoacoustic and electrophysiological data suggest the left hemisphere to be more efficient in resolving temporal aspects of complex speech and nonspeech auditory signals. At least some laterality effects of speech sound processing, thus, might reflect side-differences of general-auditory operations. As a consequence, these functional asymmetries of central-auditory processing might have given rise via a „snowball effect” to left-hemisphere lateralization of higher-order (cognitive) aspects of speech perception such as the phonological component of the mental lexicon.

Literatur

  • 1 Critchley M. Dax's law.  Int J Neurol. 1964;  4 199-206
  • 2 Broca P. Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphémie (perte de la parole).  Bulletins de la Société Anatomique de Paris. 1861;  36 330-357
  • 3 Broca P. Sur le siège de la faculté du langage articulé.  Bulletins de la Société d'Anthropologie de Paris. 1865;  6 377-393
  • 4 Wernicke C. Der aphasische Symptomencomplex. Breslau; Cohn & Weigert 1874
  • 5 Caplan D. Neurolinguistics and Linguistic Aphasiology. An Introduction. Cambridge; Cambridge University Press 1987 (Cambridge Studies in Speech Science and Communication)
  • 6 Zaidel E. Language in the right hemisphere. In: Benson DF, Zaidel E (eds) The Dual Brain. Hemispheric Specialization in Humans. (UCLA Forum in Medical Sciences, No. 26). New York; Guilford Press 1985: 205-231
  • 7 Ackermann H, Hertrich I, Ziegler W. Prosodische Störungen bei neurologischen Erkrankungen: eine Literaturübersicht.  Fortschr Neurol Psychiat. 1993;  61 241-253
  • 8 Ackermann H, Hertrich I, Grodd W, Wildgruber D. „Das Hören von Gefühlen”: funktionell-neuroanatomische Grundlagen der Verarbeitung affektiver Prosodie.  Akt Neurol. 2004;  31 449-460
  • 9 Lichtheim L. On aphasia.  Brain. 1885;  7 433-485
  • 10 Lichtheim L. Ueber Aphasie.  Deutsches Archiv fuer klinische Medicin. 1885;  36 204-268
  • 11 Ackermann H, Mathiak K. Symptomatologie, pathologisch-anatomische Grundlagen und Pathomechanismen zentraler Hörstörungen (reine Worttaubheit, auditive Agnosie, Rindentaubheit): eine Literaturübersicht.  Fortschr Neurol Psychiat. 1999;  67 509-523
  • 12 Poeck K. Temporal lobe syndromes. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Clinical Neuropsychology. (Handbook of Clinical Neurology, Vol. 45, Revised Series 1). Amsterdam; Elsevier 1985: 43-48
  • 13 Friederici A D, Cramon D Y von. Neurobiologische Grundlagen des Sprachverstehens. In: Friederici AD (Hrsg) Sprachrezeption. (Enzyklopädie der Psychologie, Themenbereich C, Serie III, Band 2). Göttingen; Hogrefe 1999: 307-349
  • 14 Liberman A M. Speech. A Special Code. Cambridge; MIT Press 1996
  • 15 Ladefoged P, Maddieson I. The Sounds of the World's Languages. Oxford; Blackwell 1997
  • 16 Suga N. Multi-function theory for cortical processing of auditory information: implications of single-unit and lesion data for future research.  J Comp Physiol [A]. 1994;  175 135-144
  • 17 Kuhl P K. Early language acquisition: cracking the speech code.  Nat Rev Neurosci. 2004;  5 831-843
  • 18 Oller D K. The Emergence of the Speech Capacity. Mahwah; Erlbaum 2000
  • 19 MacNeilage P F, Davis B L. Motor mechanisms in speech ontogeny: phylogenetic, neurobiological and linguistic implications.  Curr Opin Neurobiol. 2001;  11 696-700
  • 20 Jusczyk P W. The Discovery of Spoken Language. Cambridge; MIT Press 1997
  • 21 Sams M, Aulanko R, Aaltonen O, Näätänen R. Event-related potentials to infrequent changes in synthesized phonetic stimuli.  J Cogn Neurosci. 1990;  2 344-357
  • 22 Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders.  Brain Lang. 1997;  60 323-331
  • 23 Ackermann H, Mathiak K, Wildgruber D. et al .Neurobiologische Grundlagen der Sprachlautwahrnehmung: Klinische und funktionell-bildgebende Befunde. In: Müller HM, Rickheit G (Hrsg) Neurokognition der Sprache. Tübingen; Stauffenburg 2004: 167-189
  • 24 Kluender K R, Diehl R L, Killeen P R. Japanese quail can learn phonetic categories.  Science. 1987;  237 1195-1197
  • 25 Kuhl P K, Miller J D. Speech perception by the chinchilla: voiced-voiceless distinction in alveolar plosive consonants.  Science. 1975;  190 69-72
  • 26 Kuhl P K, Padden D M. Enhanced discriminability at the phonetic boundaries for the place feature in macaques.  J Acoust Soc Am. 1983;  73 1003-1010
  • 27 Eimas P D, Siqueland E R, Jusczyk P, Vigorito J. Speech perception in infants.  Science. 1971;  171 303-306
  • 28 Simos P G, Breier J I, Zouridakis G, Papanicolaou A C. Magnetic fields elcited by a tone onset time continuum in humans.  Brain Res Cogn Brain Res. 1998;  6 285-294
  • 29 Massaro D W. Psychological aspects of speech perception: implications for research and theory. In: Gernsbacher MA (ed) Handbook of Psycholinguistics. San Diego; Academic Press 1994: 219-263
  • 30 Bregman A S. Auditory Scene Analysis. The Perceptual Organization of Sound. Cambridge; MIT Press 1990
  • 31 Geschwind N. Disconnexion syndromes in animals and man.  Brain. 1965;  88 237-294, 585 - 644
  • 32 Schacter D L. Priming and multiple memory systems: perceptual mechanisms of implicit memory.  J Cogn Neurosci. 1992;  4 244 -256
  • 33 Griffiths T D, Warren J D. The planum temporale as a computational hub.  TINS. 2002;  25 348-353
  • 34 Shankweiler D, Studdert-Kennedy M. Identification of consonants and vowels presented to left and right ears.  Q J Exp Psychol. 1967;  19 59-63
  • 35 Studdert-Kennedy M, Shankweiler D. Hemispheric specialization for speech perception.  J Acoust Soc Am. 1970;  48 579-594
  • 36 Molfese D L, Erwin R J. Intrahemispheric differentiation of vowels: principal component analysis of auditory evoked responses to computer-synthesized vowel sounds.  Brain Lang. 1981;  13 333-344
  • 37 Godfrey J J. Perceptual difficulty and the right ear advantage for vowels.  Brain Lang. 1974;  1 323-335
  • 38 Weiss M, House A S. Perception of dichotically presented vowels.  J Acoust Soc Am. 1973;  53 51-58
  • 39 Dewson J H. Preliminary evidence of hemispheric asymmetry of auditory function in monkeys. In: Harnad S, Doty RW, Goldstein L et al (eds) Lateralization in the Nervous System. New York; Academic Press 1977: 63-71
  • 40 Petersen M R, Beecher M D, Zoloth S R. et al . Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata).  Science. 1978;  202 324-326
  • 41 Näätänen R, Winkler I. The concept of auditory stimulus representation in cognitive neuroscience.  Psychol Bull. 1999;  125 826 -859
  • 42 Tiitinen H, May P, Reinikainen K, Näätänen R. Attentive novelty detection in humans is governed by pre-attentive sensory memory.  Nature. 1994;  372 90-92
  • 43 Dehaene-Lambertz G, Dupoux E, Gout A. Electrophysiological correlates of phonological processing: a cross-linguistic study.  J Cogn Neurosci. 2000;  12 635-647
  • 44 Eulitz C, Diesch E, Pantev C. et al . Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli.  J Neurosci. 1995;  15 2748-2755
  • 45 Diesch E, Eulitz C, Hampson S, Ross B. The neurotopography of vowels as mirrored by evoked magnetic field measurements.  Brain Lang. 1996;  53 143-168
  • 46 Tiitinen H, Sivonen P, Alku P. et al . Electromagnetic recordings reveal latency differences in speech and tone processing in humans.  Brain Res Cogn Brain Res. 1999;  8 355-363
  • 47 Miki K, Watanabe S, Kakigi R. Interaction between auditory and visual stimulus relating to the vowel sounds in the auditory cortex in humans: a magnetoencephalographic study.  Neurosci Lett. 2004;  357 199-202
  • 48 Kuriki S, Murase M. Neuromagnetic study of the auditory responses in right and left hemispheres of the human brain evoked by pure tones and speech sounds.  Exp Brain Res. 1989;  77 127-134
  • 49 Alku P, Sivonen P, Palomaki K, Tiitinen H. The periodic structure of vowel sounds is reflected in human electromagnetic brain responses.  Neurosci Lett. 2001;  298 25-28
  • 50 Eulitz C, Obleser J, Lahiri A. Intra-subject replication of brain magnetic activity during the processing of speech sounds.  Brain Res Cogn Brain Res. 2004;  19 82-91
  • 51 Poeppel D, Phillips C, Yellin E. et al . Processing of vowels in supratemporal auditory cortex.  Neurosci Lett. 1997;  221 145-148
  • 52 Obleser J, Eulitz C, Lahiri A, Elbert T. Gender differences in functional hemispheric asymmetry during processing of vowels as reflected by the human brain magnetic response.  Neurosci Lett. 2001;  314 131-134
  • 53 Vihla M, Lounasmaa O V, Salmelin R. Cortical processing of change detection: dissociation between natural vowels and two-frequency complex tones.  Proc Natl Acad Sci USA. 2000;  97 10590-10594
  • 54 Kaukoranta E, Hari R, Lounasmaa O V. Responses of the human auditory cortex to vowel onset after fricative consonants.  Exp Brain Res. 1987;  69 19-23
  • 55 Diesch E, Luce T. Topographic and temporal indices of vowel spectral envelope extraction in the human auditory cortex.  J Cogn Neurosci. 2000;  12 878-893
  • 56 Obleser J, Elbert T, Lahiri A, Eulitz C. Cortical representation of vowels reflects acoustic dissimilarity determined by formant frequencies.  Brain Res Cogn Brain Res. 2003;  15 207-213
  • 57 Obleser J, Eulitz C, Lahiri A. Magnetic brain response mirrors extraction of phonological features from spoken vowels.  J Cogn Neurosci. 2004;  16 31-39
  • 58 Jaramillo M, Ilvonen T, Kujala T. et al . Are different kinds of acoustic features processed differently for speech and non-speech sounds?.  Brain Res Cogn Brain Res. 2001;  12 459-466
  • 59 Savela J, Kujala T, Tuomainen J. et al . The mismatch negativity and reaction time as indices of the perceptual distance between the corresponding vowel of two related languages.  Brain Res Cogn Brain Res. 2003;  16 250-256
  • 60 Jacobsen T. Mismatch negativity to frequency changes: no evidence from human event-related brain potentials for categorical speech processing of complex tones resembling vowel formant structure.  Neurosci Lett. 2004;  362 204-208
  • 61 Jacobsen T, Schröger E, Alter K. Pre-attentive perception of vowel phonemes from variable speech stimuli.  Psychophysiology. 2004;  41 654-659
  • 62 Jacobsen T, Schröger E, Sussman E. Pre-attentive categorization of vowel formant structure in complex tones.  Brain Res Cogn Brain Res. 2004;  20 473-479
  • 63 Aaltonen O, Tuomainen J, Laine M, Niemi P. Event-related potentials and discrimination of steady-state vowels within phoneme categories: a preliminary study.  Scand J Logoped Phonet. 1992;  17 107-112
  • 64 Maiste A, Wiens A, Hunt M, Picton T. Event-related potentials and the categorical perception of speech sounds.  Ear Hear. 1995;  16 68-90
  • 65 Sharma A, Kraus N, McGee T. et al . Acoustic versus phonetic representation of speech as reflected by the mismatch negativity event-related potential.  Electroencephalogr Clin Neurophysiol. 1993;  88 64-71
  • 66 Näätänen R, Lehtokoski A, Lennes M. et al . Language-specific phoneme representations revealed by electric and magnetic brain responses.  Nature. 1997;  385 432-434
  • 67 Shestakova A, Brattico E, Huotilainen M. et al . Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study.  NeuroReport. 2002;  13 1813-1816
  • 68 Winkler I, Lehtokoski A, Alku P. et al . Pre-attentive detection of vowel contrasts utilizes both phonetic and auditory memory representations.  Brain Res Cogn Brain Res. 1999;  7 357-369
  • 69 Rinne T, Alho K, Alku P. et al . Analysis of speech sounds is left-hemisphere predominant at 100 - 150 ms after sound onset.  NeuroReport. 1999;  10 1113-1117
  • 70 Näätänen R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm).  Psychophysiology. 2001;  38 1-21
  • 71 Molfese D L. Neuroelectrical correlates of categorical speech perception in adults.  Brain Lang. 1978;  5 25-35
  • 72 Molfese D L. Hemispheric specialization for temporal information: implications for the perception of voicing cues during speech perception.  Brain Lang. 1980;  11 285-299
  • 73 Molfese D L, Hess T M. Hemispheric specialization for VOT perception in the preschool child.  J Exp Child Psychol. 1978;  26 71-84
  • 74 Poeppel D, Yellin E, Phillips C. et al . Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds.  Brain Res Cogn Brain Res. 1996;  4 231-242
  • 75 Simos P G, Diehl R L, Breier J I. et al . MEG correlates of categorical perception of a voice onset time continuum in humans.  Brain Res Cogn Brain Res. 1998;  7 215-219
  • 76 Simos P G, Molfese D L. Electrophysiological responses from a temporal order continuum in the newborn infant.  Neuropsychologia. 1997;  35 89-98
  • 77 Papanicolaou A C, Castillo E, Breier J I. et al . Differential brain activation patterns during perception of voice and tone onset time series: a MEG study.  NeuroImage. 2003;  18 448-459
  • 78 Ackermann H, Lutzenberger W, Hertrich I. Hemispheric lateralization of the neural encoding of temporal speech features: a whole-head magnetencephalography study.  Brain Res Cogn Brain Res. 1999;  7 511-518
  • 79 Phillips C, Pellathy T, Marantz A. et al . Auditory cortex accesses phonological categories: an MEG mismatch study.  J Cogn Neurosci. 2000;  12 1038-1055
  • 80 Wood C C, Goff W R, Day R S. Auditory evoked potentials during speech perception.  Science. 1971;  173 1248-1251
  • 81 Morrell L K, Salamy J G. Hemispheric asymmetry of electrocortical responses to speech stimuli.  Science. 1971;  174 164-166
  • 82 Molfese D L, Schmid A. An auditory evoked potential study of consonant perception in different vowel environments.  Brain Lang. 1983;  18 57-70
  • 83 Molfese D L. Left hemisphere sensitivity to consonant sounds not displayed by the right hemisphere: electrophysiological correlates.  Brain Lang. 1984;  22 109-127
  • 84 Molfese D L, Buhrke R A, Wang S L. The right hemisphere and temporal processing of consonant transition durations: electrophysiological correlates.  Brain Lang. 1985;  26 49-62
  • 85 Gage N, Poeppel D, Roberts T PL, Hickock G. Auditory evoked M100 reflects onset acoustics of speech sounds.  Brain Res Cogn Brain Res. 1998;  814 236-239
  • 86 Obleser J, Lahiri A, Eulitz C. Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds postsyllable onset.  NeuroImage. 2003;  20 1839-1847
  • 87 Obleser J, Rockstroh B, Eulitz C. Gender differences in hemispheric asymmetry of syllable processing: left-lateralized magnetic N100 varies with syllable categorization in females.  Psychophysiology. 2004;  41 783-788
  • 88 Kraus N, Cheour M. Speech sound representation in the brain.  Audiol Neurootol. 2000;  5 140-150
  • 89 Diesch E, Luce T. Magnetic mismatch fields elicited by vowels and consonants.  Exp Brain Res. 1997;  116 139-152
  • 90 Sams M, Aulanko R, Aaltonen O, Näätänen R. Event-related potentials to infrequent changes in synthesized phonetic stimuli.  J Cogn Neurosci. 1990;  2 344-357
  • 91 Sharma A, Dorman M F. Cortical auditory evoked potential correlates of categorical perception of voice-onset time.  J Acoust Soc Am. 1999;  106 1078-1083
  • 92 Mathiak K, Hertrich I, Lutzenberger W, Ackermann H. Preattentive processing of consonant-vowel syllables at the supratemporal plane: a whole-head magnetencephalography study.  Brain Res Cogn Brain Res. 1999;  8 251-257
  • 93 Mathiak K, Hertrich I, Lutzenberger W, Ackermann H. Encoding of temporal speech features (formant transients) during binaural and dichotic stimulus application: a whole-head magnetencephalography study.  Brain Res Cogn Brain Res. 2000;  10 125-131
  • 94 Hertrich I, Mathiak K, Lutzenberger W, Ackermann H. Hemispheric lateralization of the processing of consonant-vowel syllables (formant transitions): effects of stimulus characteristics and attentional demands on evoked magnetic fields.  Neuropsychologia. 2002;  40 1902-1917
  • 95 Ackermann H, Hertrich I, Lutzenberger W, Mathiak K. Cerebral organization of speech sound perception: hemispheric lateralization effects at the level of the supratemporal plane, the inferior dorsolateral frontal lobe and the cerebellum. In: König R, Heil P, Budinger E, Scheich H (eds) The Auditory Cortex. A Synthesis of Human and Animal Research. Mahwah; Erlbaum 2005: 181-200
  • 96 Poeppel D. A critical review of PET studies of phonological processing.  Brain Lang. 1996;  55 317-351
  • 97 Binder J R, Frost J A, Hammeke T A. et al . Human temporal lobe activation by speech and nonspeech sounds.  Cereb Cortex. 2000;  10 512-528
  • 98 Celsis P, Boulanouar K, Doyon B. et al . Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones.  NeuroImage. 1999;  9 135-144
  • 99 Jäncke L, Wüstenberg T, Scheich H, Heinze H J. Phonetic perception and the temporal cortex.  NeuroImage. 2002;  15 733-746
  • 100 Tallal P, Miller S, Fitch R H. Neurobiological basis of speech: a case for the preeminence of temporal processing. In: Tallal P, Galaburda AM, Llinàs RR, Euler C von (eds) Temporal Information Processing in the Nervous System. Special Reference to Dyslexia and Dysphasia. (Annals of the New York Academy of Sciences, Vol. 682.) New York; The New York Academy of Sciences 1993: 27-47
  • 101 Ivry R B, Robertson L C. The Two Sides of Perception. Cambridge; MIT Press 1998
  • 102 Poeppel D. Pure word deafness and the bilateral processing of the speech code.  Cognitive Science. 2001;  25 679-693
  • 103 Nicholls M ER. Temporal processing asymmetries between the cerebral hemispheres: evidence and implication.  Laterality. 1996;  1 97-137
  • 104 Steinschneider M, Fishman Y I, Arezzo J C. Representation of the voice onset time (VOT) speech parameter in population responses within primary auditory cortex of the awake monkey.  J Acoust Soc Am. 2003;  114 307-321
  • 105 Steinschneider M, Volkov I O, Noh M D. et al . Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex.  J Neurophysiol. 1999;  82 2346-2357
  • 106 Steinschneider M, Volkov I O, Fishman Y I. et al . Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter.  Cereb Cortex. 2005;  15 170-186
  • 107 Sharma A, Marsh C M, Dorman M F. Relationship between N1 evoked potential morphology and the perception of voicing.  J Acoust Soc Am. 2000;  108 3030-3035
  • 108 Liégeois-Chauvel C, Graaf J B de, Laguitton V, Chauvel P. Specialization of left auditory cortex for speech perception in man depends on temporal coding.  Cereb Cortex. 1999;  9 484-496
  • 109 Ojemann G A. Brain organization for language from the perspective of electrical stimulation mapping.  Behav Brain Sci. 1983;  6 189-230
  • 110 Blumstein S E, Baker E, Goodglass H. Phonological factors in auditory comprehension in aphasia.  Neuropsychologia. 1977;  15 19-29
  • 111 Blumstein S E, Cooper W E, Zurif E B, Caramazza A. The perception and production of voice-onset time in aphasia.  Neuropsychologia. 1977;  15 371-383
  • 112 Fiez J A, Raichle M E, Miezin F M. et al . PET studies of auditory and phonological processing: effects of stimulus characteristics and task demands.  J Cogn Neurosci. 1995;  7 357-375
  • 113 Burton M W, Small S L, Blumstein S E. The role of segmentation in phonological processing: an fMRI investigation.  J Cogn Neurosci. 2000;  12 679-690
  • 114 Ackermann H, Daum I. Neuropsychological deficits in cerebellar syndromes. In: Bédard MA, Agid Y, Chouinard S, Fahn S, Korczyn AD, Lespérance P (eds) Mental and Behavioral Dysfunction in Movement Disorders. Totowa; Humana Press 2003: 147-156
  • 115 Ackermann H, Mathiak K, Ivry R B. Temporal organization of „internal speech” as a basis for cerebellar modulation of cognitive functions.  Behav Cogn Neurosci Rev. 2004;  3 14-22
  • 116 Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: a functional magnetic resonance imaging study.  J Cogn Neurosci. 2002;  14 902-912
  • 117 Mathiak K, Hertrich I, Grodd W, Ackermann H. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory.  NeuroImage. 2004;  21 154-162
  • 118 Frauenfelder U H, Floccia C. Das Erkennen gesprochener Wörter. In: Friederici AD (Hrsg) Sprachrezeption. (Enzyklopädie der Psychologie, Themenbereich C, Serie III, Band 2.) Göttingen; Hogrefe 1999: 1-48
  • 119 Striedter G F. Principles of Brain Evolution. Sunderland; Sinauer Associates 2005

Prof. Dr. Hermann AckermannMA 

Abteilung Allgemeine Neurologie · Hertie Institut für Klinische Hirnforschung · Universität Tübingen

Hoppe-Seyler-Straße 3

72076 Tübingen

Email: hermann.ackermann@uni-tuebingen.de

    >