Plant Biol (Stuttg) 2006; 8(1): 167-174
DOI: 10.1055/s-2005-873008
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

The “Kluge-Lüttge Kammer”: A Preliminary Evaluation of an Enclosed, Crassulacean Acid Metabolism (CAM) Mesocosm that Allows Separation of Synchronized and Desynchronized Contributions of Plants to Whole System Gas Exchange

U. Rascher1 , 2 , E. G. Bobich1 , 3 , C. B. Osmond1 , 4
  • 1Biosphere 2 Laboratory, Columbia University, Oracle, AZ 85623, USA
  • 2Institute of Chemistry and Dynamics of the Geosphere, ICG‐III, Phytosphere, Forschungszentrum Jülich, Stetternicher Forst, 52425 Jülich, Germany
  • 3Present address: Biological Sciences Department, California State Polytechnic University, 3801 W Temple Ave, Pomona, CA 91768-4032, USA
  • 4Present address: School of Biochemistry and Molecular Biology, Australian National University, Canberra ACT 0200, Australia
Further Information

Publication History

Received: August 11, 2005

Accepted: October 17, 2005

Publication Date:
25 January 2006 (online)

Abstract

Crassulacean acid metabolism (CAM) is recognized as a photosynthetic adaptation of plants to arid habitats. This paper presents a proof-of-concept evaluation of partitioning net CO2 exchanges for soil and plants in an arid, exclusively CAM mesocosm, with soil depth and succulent plant biomass approximating that of natural Sonoran Desert ecosystems. We present the first evidence that an enclosed CAM-dominated soil and plant community exposed to a substantial day/night temperature difference (30/20 °C), exhibits a diel gas exchange pattern consisting of four consecutive phases with a distinct nocturnal CO2 uptake. These phases were modulated by plant assimilation and soil respiration processes. Day-time stomatal closure of the CAM cycle during phase III was used to eliminate aboveground photosynthetic assimilation and respiration and thereby to estimate belowground plant plus soil respiration. Rapid changes in temperature appeared to synchronize single plant gas exchange but individual plant gas exchange patterns were desynchronized at constant day/night temperatures (25 °C), masking the distinct mesocosm pattern. Overall, the mean carbon budget of this CAM model Sonoran Desert system was negative, releasing an average of 22.5 mmol CO2 m-2 d-1. The capacity for nocturnal CO2 assimilation in this exclusively CAM mesocosm was inadequate to recycle CO2 released by plant and soil respiration.

References

  • 1 Anderson C. M., Wilkins M. B.. Period and phase control by temperature in the circadian rhythm of carbon dioxide fixation in illuminated leaves of Bryophyllum fedtschenkoi.  Planta. (1989 a);  177 456-469
  • 2 Anderson C. M., Wilkins M. B.. Phase resetting of the circadian rhythm of carbon dioxide assimilation in Bryophyllum leaves in relation to their malate content following brief exposure to high and low temperatures, darkness and 5 % carbon dioxide.  Planta. (1989 b);  180 61-73
  • 3 Bennett-Clark T. A.. The role of organic acids in plant metabolism.  New Phytologist. (1933);  32 37-71
  • 4 Blasius B., Huppert A., Stone L.. Complex dynamics and phase synchronization in spatially extended ecological systems.  Nature. (1999);  399 354-359
  • 5 Bohn A., Rascher U., Hütt M. T., Kaiser F., Lüttge U.. Responses of a plant circadian rhythm to thermoperiodic perturbations with asymmetric temporal patterns and the rate of temperature change.  Biological Rhythm Research. (2002);  33 151-170
  • 6 Borland A. M., Griffiths H., Maxwell C., Fordham M. C., Broadmeadow M. S. J.. CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: the role of organic acid speciation and decarboxylation.  Plant, Cell and Environment. (1996);  19 655-664
  • 7 Bowers J. E.. Does Ferocactus wislizenii (Cactaceae) have a between-year seed bank?.  Journal of Arid Environments. (2000);  45 197-205
  • 8 Broetto F., Lüttge U., Ratajczak R.. Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum.  Functional Plant Biology. (2002);  29 13-23
  • 9 Carter P. J., Wilkins M. B., Nimmo H. G., Fewson C. A.. Effects of temperature on the activity of phosphoenolpyruvate carboxylase and on the control of CO2 fixation in Bryophyllum fedtschenkoi.  Planta. (1995);  196 375-380
  • 10 Cushman J. C., Borland A. M.. Induction of crassulacean acid metabolism by water limitation.  Plant, Cell and Environment. (2002);  25 295-310
  • 11 de Saussure T.. Recherches Chimiques sur la Végetation. Paris; Chez la V. Nyon (1804)
  • 12 Dodd A. N., Borland A. M., Haslam R. P., Griffiths H., Maxwell K.. Crassulacean acid metabolism: plastic, fantastic.  Journal of Experimental Botany. (2002);  53 569-580
  • 13 Dodd A. N., Salathia N., Hall A., Kévei E., Tóth R., Nagy F., Hibberd J. M., Millar A. J., Webb A. A. R.. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.  Science. (2005);  309 630-633
  • 14 Drennan P. M., Nobel P. S.. Frequencies of major C3, C4, and CAM perennials on different slopes in the northwestern Sonoran Desert.  Flora. (1997);  192 297-304
  • 15 Emmerich W. E.. Carbon dioxide fluxes in a semiarid environment with high carbonate soils.  Agricultural and Forest Meteorology. (2003);  116 91-102
  • 16 Franco A. C., Haag-Kerwer A., Herzog B., Grams T. E. E., Ball E., de Mattos E. A., Scarano F. R., Barreto S., Garcia M. A., Mantovani A., Lüttge U.. The effect of light levels on daily pattern of chlorophyll fluorescence and organic acid accumulation in the tropical CAM tree Clusia hilariana.  Trees. (1996);  10 359-365
  • 17 Friemert V., Heininger D., Kluge M., Ziegler H.. Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean-acid-metabolism plants.  Planta. (1988);  174 453-461
  • 18 Grams T. E. E., Borland A.M., Roberts A., Griffiths H., Beck F., Lüttge U.. On the mechanism of reinitiation of endogenous crassulacean acid metabolism rhythm by temperature changes.  Plant Physiology. (1997);  113 1309-1317
  • 19 Haag-Kerwer A., Franco A. C., Lüttge U.. The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L.  Journal of Experimental Botany. (1992);  43 345-352
  • 20 Hartwell J., Nimmo G. A., Wilkins M. B., Jenkins G. I., Nimmo H. G.. Probing the circadian control of phosphoenolpyruvate carboxylase kinase gene expression in Bryophyllum fedshenkoi. .  Functional Plant Biology. (2002);  29 663-668
  • 21 Heyne B.. On the deoxidation of the leaves of Cotyledon calycina.  Transactions of the Linnean Society London. (1815);  11 213-215
  • 22 Holtum J. A. M.. Crassulacean acid metabolism.  Functional Plant Biology. (2002);  29 657-785
  • 23 Kluge M., Fischer F.. Relations between CO2-exchange and transpiration in Bryophyllum daigremontianum.  Planta. (1967);  77 212-223
  • 24 Kluge M., Heininger B.. Untersuchungen an Bryophyllum über den Efflux von Malat aus den Vakuolen der assimilierenden Zellen und mögliche Einflüsse dieses Vorgangs auf den CAM.  Planta. (1973);  113 333-343
  • 25 Kluge M., Lüttge U.. The role of malic acid fluxes in regulation of crassulacean acid metabolism (CAM): osmoregulation of efflux at the tonoplast. Zimmermann, U. and Dainty, J., eds. Membrane Transport in Plants. Berlin, Heidelberg, New York; Springer (1974): 101
  • 26 Kluge M., Ting I. P.. Crassulacean Acid Metabolism. Analysis of an Ecological Adaptation. Berlin, Heidelberg, New York; Springer Verlag (1978)
  • 27 Kluge M., Razanoelisoa B., Brulfert J.. Implications of genotypic diversity and phenotypic plasticity in the ecophysiological success of CAM plants, examined by studies on the vegetation of Madagascar.  Plant Biology. (2001);  3 214-222
  • 28 Kluge M., Vinson B., Ziegler H.. Ecophysiological studies on orchids of Madagascar: incidence and plasticity of crassulacean acid metabolism in species of the genus Angraecum Bory.  Plant Ecology. (1997);  135 43-57
  • 29 Leegood R. C.. The regulation of C‐4 photosynthesis.  Advances in Botanical Research incorporating Advances in Plant Pathology. (1997);  26 251-316
  • 30 Lüttge U.. Carbon-dioxide and water demand - Crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work.  New Phytologist. (1987);  106 593-629
  • 31 Lüttge U.. Ecophysiology of crassulacean acid metabolism (CAM).  Annals of Botany. (2004);  93 629-652
  • 32 Lüttge U., Ball E.. Free running oscillations of transpiration and CO2 exchange in CAM plants without a concomitant rhythm of malate levels.  Zeitschrift für Pflanzenphysiology. (1978);  90 69-77
  • 33 Lüttge U., Grams T. E. E., Hechler B., Blasius B., Beck F.. Resonance of the basic frequency of the circadian rhythm of CAM and its harmonic overtones in Kalanchoë diagremontiana Hamet et Perrier de la Bathie under external temperature rhythms of varied period lengths in continuous light.  Botanica Acta. (1996);  109 422-426
  • 34 Lüttge U., Kluge M., Ball E.. Effects of osmotic gradients on vacuolar malic acid storage - basic principles in oscillatory behavior of crassulacean acid metabolism.  Plant Physiology. (1975);  56 613-616
  • 35 Marino B. D. V., Odum (eds.) H. T.. Biosphere 2. Research Past, Present. Reprint from Ecological Engineering 13, 358 pp. (1999)
  • 36 Medina E., Osmond C.B.. Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoë daigremontiana.  Australian Journal of Plant Physiology. (1981);  8 641-649
  • 37 Nobel P. S.. Environmental Biology of Agaves and Cacti. Cambridge; Cambridge University Press (1988)
  • 38 Nobel P. S., Bobich E. G.. Initial net CO2 uptake responses and root growth for a CAM community placed in a closed environment.  Annals of Botany. (2002);  90 593-598
  • 39 Osmond C.B.. Crassulacean acid metabolism: a curiosity in context.  Annual Revues of Plant Physiology. (1978);  29 379-414
  • 40 Post E.. Large-scale climate synchronizes the timing of flowering by multiple species.  Ecology. (2003);  84 277-281
  • 41 Rascher U., Hütt M. T., Siebke K., Osmond C. B., Beck F., Lüttge U.. Spatio-temporal variations of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators.  Proceedings of the National Academy of Sciences of the USA. (2001);  98 11801-11805
  • 42 Satake A., Iwasa Y.. The synchronized and intermittent reproduction of forest trees is mediated by the Moran effect, only in association with pollen coupling.  Journal of Ecology. ( 2002);  90 830-838
  • 43 Scott R. L., Edwards E. A., Shuttleworth W. J., Huxman T. E., Watts C., Goodrich D. C.. Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem.  Agricultural and Forest Meteorology. (2004);  122 65-84
  • 44 Trueman R., Gonzalez-Meler M. A.. Accelerated belowground C losses in a managed agriforest ecosystem exposed to elevated carbon dioxide concentrations.  Global Change Biology. (2005);  11 1258-1271
  • 45 Warren D. M., Wilkins M. B.. An endogenous rhythm in the rate of dark fixation of carbon dioxide in leaves of Bryophyllum fedtschenkoi.  Nature. (1961);  191 686-688
  • 46 Wilkins M. B.. An endogenous rhythm in the rate of carbon dioxide output of Bryophyllum (III). The effects of temperature changes on the phase and period of the rhythm.  Proceedings of the Royal Society London - Series B. (1962);  220-241
  • 47 Wilkins M. B.. The circadian rhythm of carbon-dioxide metabolism in Bryophyllum: the mechanism of phase-shift induction by thermal stimuli.  Planta. (1983);  157 471-480
  • 48 Winter K., Smith J. A. C.. Crassulacean Acid Metabolism. Ecological studies Vol. 114. Berlin, Heidelberg, New York; Springer Verlag (1996)

U. Rascher

Institute of Chemistry and Dynamics of the Geosphere, ICG‐III, Phytosphere
Forschungszentrum Jülich

Stetternicher Forst

52425 Jülich

Germany

Email: u.rascher@fz-juelich.de

Editor: R. C. Leegood