Abstract
Crassulacean acid metabolism (CAM) is recognized as a photosynthetic adaptation of
plants to arid habitats. This paper presents a proof-of-concept evaluation of partitioning
net CO2 exchanges for soil and plants in an arid, exclusively CAM mesocosm, with soil depth
and succulent plant biomass approximating that of natural Sonoran Desert ecosystems.
We present the first evidence that an enclosed CAM-dominated soil and plant community
exposed to a substantial day/night temperature difference (30/20 °C), exhibits a diel
gas exchange pattern consisting of four consecutive phases with a distinct nocturnal
CO2 uptake. These phases were modulated by plant assimilation and soil respiration processes.
Day-time stomatal closure of the CAM cycle during phase III was used to eliminate
aboveground photosynthetic assimilation and respiration and thereby to estimate belowground
plant plus soil respiration. Rapid changes in temperature appeared to synchronize
single plant gas exchange but individual plant gas exchange patterns were desynchronized
at constant day/night temperatures (25 °C), masking the distinct mesocosm pattern.
Overall, the mean carbon budget of this CAM model Sonoran Desert system was negative,
releasing an average of 22.5 mmol CO2 m-2 d-1 . The capacity for nocturnal CO2 assimilation in this exclusively CAM mesocosm was inadequate to recycle CO2 released by plant and soil respiration.
Key words
Agave schottii
-
Opuntia engelmannii
- gas exchange -
Ferocactus wislizeni
- mesocosm -
Cylindropuntia versicolor
- Crassulacean acid metabolism (CAM) -
Carnegiea gigantea .
References
1
Anderson C. M., Wilkins M. B..
Period and phase control by temperature in the circadian rhythm of carbon dioxide
fixation in illuminated leaves of Bryophyllum fedtschenkoi .
Planta.
(1989 a);
177
456-469
2
Anderson C. M., Wilkins M. B..
Phase resetting of the circadian rhythm of carbon dioxide assimilation in Bryophyllum leaves in relation to their malate content following brief exposure to high and low
temperatures, darkness and 5 % carbon dioxide.
Planta.
(1989 b);
180
61-73
3
Bennett-Clark T. A..
The role of organic acids in plant metabolism.
New Phytologist.
(1933);
32
37-71
4
Blasius B., Huppert A., Stone L..
Complex dynamics and phase synchronization in spatially extended ecological systems.
Nature.
(1999);
399
354-359
5
Bohn A., Rascher U., Hütt M. T., Kaiser F., Lüttge U..
Responses of a plant circadian rhythm to thermoperiodic perturbations with asymmetric
temporal patterns and the rate of temperature change.
Biological Rhythm Research.
(2002);
33
151-170
6
Borland A. M., Griffiths H., Maxwell C., Fordham M. C., Broadmeadow M. S. J..
CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: the role of organic
acid speciation and decarboxylation.
Plant, Cell and Environment.
(1996);
19
655-664
7
Bowers J. E..
Does Ferocactus wislizenii (Cactaceae) have a between-year seed bank?.
Journal of Arid Environments.
(2000);
45
197-205
8
Broetto F., Lüttge U., Ratajczak R..
Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes
of the antioxidative response system of Mesembryanthemum crystallinum .
Functional Plant Biology.
(2002);
29
13-23
9
Carter P. J., Wilkins M. B., Nimmo H. G., Fewson C. A..
Effects of temperature on the activity of phosphoenolpyruvate carboxylase and on the
control of CO2 fixation in Bryophyllum fedtschenkoi .
Planta.
(1995);
196
375-380
10
Cushman J. C., Borland A. M..
Induction of crassulacean acid metabolism by water limitation.
Plant, Cell and Environment.
(2002);
25
295-310
11 de Saussure T.. Recherches Chimiques sur la Végetation. Paris; Chez la V. Nyon
(1804)
12
Dodd A. N., Borland A. M., Haslam R. P., Griffiths H., Maxwell K..
Crassulacean acid metabolism: plastic, fantastic.
Journal of Experimental Botany.
(2002);
53
569-580
13
Dodd A. N., Salathia N., Hall A., Kévei E., Tóth R., Nagy F., Hibberd J. M., Millar A. J.,
Webb A. A. R..
Plant circadian clocks increase photosynthesis, growth, survival, and competitive
advantage.
Science.
(2005);
309
630-633
14
Drennan P. M., Nobel P. S..
Frequencies of major C3 , C4 , and CAM perennials on different slopes in the northwestern Sonoran Desert.
Flora.
(1997);
192
297-304
15
Emmerich W. E..
Carbon dioxide fluxes in a semiarid environment with high carbonate soils.
Agricultural and Forest Meteorology.
(2003);
116
91-102
16
Franco A. C., Haag-Kerwer A., Herzog B., Grams T. E. E., Ball E., de Mattos E. A.,
Scarano F. R., Barreto S., Garcia M. A., Mantovani A., Lüttge U..
The effect of light levels on daily pattern of chlorophyll fluorescence and organic
acid accumulation in the tropical CAM tree Clusia hilariana .
Trees.
(1996);
10
359-365
17
Friemert V., Heininger D., Kluge M., Ziegler H..
Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation
pathways in crassulacean-acid-metabolism plants.
Planta.
(1988);
174
453-461
18
Grams T. E. E., Borland A.M., Roberts A., Griffiths H., Beck F., Lüttge U..
On the mechanism of reinitiation of endogenous crassulacean acid metabolism rhythm
by temperature changes.
Plant Physiology.
(1997);
113
1309-1317
19
Haag-Kerwer A., Franco A. C., Lüttge U..
The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM
plant Clusia minor L.
Journal of Experimental Botany.
(1992);
43
345-352
20
Hartwell J., Nimmo G. A., Wilkins M. B., Jenkins G. I., Nimmo H. G..
Probing the circadian control of phosphoenol pyruvate carboxylase kinase gene expression in Bryophyllum fedshenkoi.
.
Functional Plant Biology.
(2002);
29
663-668
21
Heyne B..
On the deoxidation of the leaves of Cotyledon calycina .
Transactions of the Linnean Society London.
(1815);
11
213-215
22
Holtum J. A. M..
Crassulacean acid metabolism.
Functional Plant Biology.
(2002);
29
657-785
23
Kluge M., Fischer F..
Relations between CO2 -exchange and transpiration in Bryophyllum daigremontianum .
Planta.
(1967);
77
212-223
24
Kluge M., Heininger B..
Untersuchungen an Bryophyllum über den Efflux von Malat aus den Vakuolen der assimilierenden Zellen und mögliche
Einflüsse dieses Vorgangs auf den CAM.
Planta.
(1973);
113
333-343
25 Kluge M., Lüttge U..
The role of malic acid fluxes in regulation of crassulacean acid metabolism (CAM):
osmoregulation of efflux at the tonoplast. Zimmermann, U. and Dainty, J., eds. Membrane Transport in Plants. Berlin, Heidelberg,
New York; Springer (1974): 101
26 Kluge M., Ting I. P.. Crassulacean Acid Metabolism. Analysis of an Ecological Adaptation. Berlin,
Heidelberg, New York; Springer Verlag (1978)
27
Kluge M., Razanoelisoa B., Brulfert J..
Implications of genotypic diversity and phenotypic plasticity in the ecophysiological
success of CAM plants, examined by studies on the vegetation of Madagascar.
Plant Biology.
(2001);
3
214-222
28
Kluge M., Vinson B., Ziegler H..
Ecophysiological studies on orchids of Madagascar: incidence and plasticity of crassulacean
acid metabolism in species of the genus Angraecum Bory.
Plant Ecology.
(1997);
135
43-57
29
Leegood R. C..
The regulation of C‐4 photosynthesis.
Advances in Botanical Research incorporating Advances in Plant Pathology.
(1997);
26
251-316
30
Lüttge U..
Carbon-dioxide and water demand - Crassulacean acid metabolism (CAM), a versatile
ecological adaptation exemplifying the need for integration in ecophysiological work.
New Phytologist.
(1987);
106
593-629
31
Lüttge U..
Ecophysiology of crassulacean acid metabolism (CAM).
Annals of Botany.
(2004);
93
629-652
32
Lüttge U., Ball E..
Free running oscillations of transpiration and CO2 exchange in CAM plants without a concomitant rhythm of malate levels.
Zeitschrift für Pflanzenphysiology.
(1978);
90
69-77
33
Lüttge U., Grams T. E. E., Hechler B., Blasius B., Beck F..
Resonance of the basic frequency of the circadian rhythm of CAM and its harmonic overtones
in Kalanchoë diagremontiana Hamet et Perrier de la Bathie under external temperature rhythms of varied period
lengths in continuous light.
Botanica Acta.
(1996);
109
422-426
34
Lüttge U., Kluge M., Ball E..
Effects of osmotic gradients on vacuolar malic acid storage - basic principles in
oscillatory behavior of crassulacean acid metabolism.
Plant Physiology.
(1975);
56
613-616
35 Marino B. D. V., Odum (eds.) H. T.. Biosphere 2. Research Past, Present. Reprint
from Ecological Engineering 13, 358 pp. (1999)
36
Medina E., Osmond C.B..
Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoë daigremontiana .
Australian Journal of Plant Physiology.
(1981);
8
641-649
37 Nobel P. S.. Environmental Biology of Agaves and Cacti. Cambridge; Cambridge University
Press (1988)
38
Nobel P. S., Bobich E. G..
Initial net CO2 uptake responses and root growth for a CAM community placed in a closed environment.
Annals of Botany.
(2002);
90
593-598
39
Osmond C.B..
Crassulacean acid metabolism: a curiosity in context.
Annual Revues of Plant Physiology.
(1978);
29
379-414
40
Post E..
Large-scale climate synchronizes the timing of flowering by multiple species.
Ecology.
(2003);
84
277-281
41
Rascher U., Hütt M. T., Siebke K., Osmond C. B., Beck F., Lüttge U..
Spatio-temporal variations of metabolism in a plant circadian rhythm: the biological
clock as an assembly of coupled individual oscillators.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
11801-11805
42
Satake A., Iwasa Y..
The synchronized and intermittent reproduction of forest trees is mediated by the
Moran effect, only in association with pollen coupling.
Journal of Ecology.
( 2002);
90
830-838
43
Scott R. L., Edwards E. A., Shuttleworth W. J., Huxman T. E., Watts C., Goodrich D. C..
Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian
woodland ecosystem.
Agricultural and Forest Meteorology.
(2004);
122
65-84
44
Trueman R., Gonzalez-Meler M. A..
Accelerated belowground C losses in a managed agriforest ecosystem exposed to elevated
carbon dioxide concentrations.
Global Change Biology.
(2005);
11
1258-1271
45
Warren D. M., Wilkins M. B..
An endogenous rhythm in the rate of dark fixation of carbon dioxide in leaves of Bryophyllum fedtschenkoi .
Nature.
(1961);
191
686-688
46
Wilkins M. B..
An endogenous rhythm in the rate of carbon dioxide output of Bryophyllum (III). The effects of temperature changes on the phase and period of the rhythm.
Proceedings of the Royal Society London - Series B.
(1962);
220-241
47
Wilkins M. B..
The circadian rhythm of carbon-dioxide metabolism in Bryophyllum : the mechanism of phase-shift induction by thermal stimuli.
Planta.
(1983);
157
471-480
48 Winter K., Smith J. A. C.. Crassulacean Acid Metabolism. Ecological studies Vol.
114. Berlin, Heidelberg, New York; Springer Verlag (1996)
U. Rascher
Institute of Chemistry and Dynamics of the Geosphere, ICG‐III, Phytosphere Forschungszentrum Jülich
Stetternicher Forst
52425 Jülich
Germany
Email: u.rascher@fz-juelich.de
Editor: R. C. Leegood