Plant Biol (Stuttg) 2006; 8(1): 31-41
DOI: 10.1055/s-2005-872901
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

High-Light Stress does not Impair Biomass Accumulation of Sun-Acclimated Tropical Tree Seedlings (Calophyllum longifolium Willd. and Tectona grandis L. f.)

G. H. Krause1 , 2 , A. Gallé1 , 3 , A. Virgo1 , M. García1 , P. Bucic2 , P. Jahns2 , K. Winter1
  • 1Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Ancon, Panama
  • 2Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
  • 3Present address: Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
Further Information

Publication History

Received: May 9, 2005

Accepted: September 5, 2005

Publication Date:
22 December 2005 (online)

Abstract

Studies with seedlings of tropical rainforest trees (Calophyllum longifolium Willd.; Tectona grandis L. f.) were designed to test whether high-light stress affects photosynthetic performance and growth. Seedlings were cultivated in pots at a field site in Central Panama (9°N) and separated into two groups: (1) plants exposed to full solar radiation; (2) plants subjected to automatic neutral shading (48 %) whenever visible irradiance surpassed 1000, 1200, or 1600 µmol photons m-2 s-1. After 2 - 4 months, chlorophyll fluorescence (Fv/Fm ratio), photosynthetic net CO2 uptake, pigment composition, α-tocopherol content of leaves, and plant biomass accumulation were measured. Fully sun-exposed, compared to periodically shaded plants, experienced substantial high-light stress around midday, indicated by photoinhibition of photosystem II and depressed net CO2 uptake. Higher contents of xanthophyll cycle pigments, lutein, and α-tocopherol showed an enhancement of photoprotection in fully sun-exposed plants. However, in all experiments, the maximum capacity of net CO2 uptake and plant dry mass did not differ significantly between the two treatments. Thus, in these experiments, high-light stress did not impair productivity of the seedlings studied. Obviously, the continuously sun-exposed plants were capable of fully compensating for any potential costs associated with photoinhibition and repair of photosystem II, reduced CO2 assimilation, and processes of high-light acclimation.

References

  • 1 Adams III. W. W., Demmig-Adams B., Rosenstiel T. N., Brightwell A. K., Ebbert V.. Photosynthesis and photoprotection in overwintering plants.  Plant Biology. (2002);  4 545-557
  • 2 Adams III. W. W., Zarter C. R., Mueh K. E., Amiard V., Demmig-Adams B.. Energy dissipation and photoinhibition: a continuum of photoprotection. Demmig-Adams, B., Adams III, W. W., and Mattoo, A. K., eds. Photoprotection, Photoinhibition, Gene Regulation, and Environment. The Netherlands; Springer (2005): 49-64
  • 3 Baker N. R., Long S. P., Ort D. R.. Photosynthesis and temperature, with particular reference to effects on quantum yield. Long, S. P. and Woodward, F. I., eds. Plants and Temperature. Cambridge; Company of Biologists Ltd. (1988): 347-375
  • 54 Barth C., Krause G. H.. Inhibition of photosystems I and II in chilling-sensitive and chilling-tolerant plants under light and low-temperature stress.  Zeitschrift für Naturforschung. (1999);  54c 645-657
  • 4 Barth C., Krause G. H., Winter K.. Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves.  Plant, Cell and Environment. (2001);  24 163-176
  • 5 Björkman O., Demmig B., Andrews T. J.. Mangrove photosynthesis: response to high irradiance stress.  Australian Journal of Plant Physiology. (1988);  15 43-61
  • 6 Castro Y., Fetcher N., Fernández D. S.. Chronic photoinhibition in seedlings of tropical trees.  Physiologia Plantarum. (1995);  94 560-565
  • 7 Demmig B., Winter K., Krüger A., Czygan F.-C.. Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy.  Plant Physiology. (1987);  84 218-224
  • 8 Demmig-Adams B., Adams III. W. W.. Xanthophyll cycle and light stress in nature: uniform resoponse to excess direct sunlight among higher plant species.  Planta. (1996);  198 460-470
  • 9 Demmig-Adams B., Adams III. W. W., Winter K., Meyer A., Schreiber U., Pereira J. S., Krüger A., Czygan F.-C., Lange O. L.. Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during midday depression of net CO2 uptake in Arbutus unedo growing in Portugal.  Planta. (1989);  177 377-387
  • 10 Demmig-Adams B., Adams III. W. W., Logan B. A., Verhoeven A. S.. Xanthophyll cycle-dependent energy dissipation and flexible PS II efficiency in plants acclimated to light stress.  Australian Journal of Plant Physiology. (1995);  22 249-260
  • 11 Egerton J. J. G., Banks J. C. G., Gibson A., Cunningham R. B., Ball M. C.. Facilitation of seedling establishment: Reduction in irradiance enhances winter growth of Eucalyptus pauciflora.  Ecology. (2000);  81 1437-1449
  • 12 Einhorn K. S., Rosenqvist E., Leverenz J. W.. Photoinhibition in seedlings of Fraxinus and Fagus under natural light conditions: implications for forest regeneration?.  Oecologia. (2004);  140 241-251
  • 13 Farage P. K., Long S. P.. The occurrence of photoinhibition in an over-wintering crop of oil-seed rape (Brassica napus L.) and its correlation with changes in crop growth.  Planta. (1991);  815 279-286
  • 14 Färber A., Young A. J., Ruban A. V., Horton P., Jahns P.. Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants.  Plant Physiology. (1997);  115 1609-1618
  • 15 Franco A. C., Lüttge U.. Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency.  Oecologia. (2002);  131 356-365
  • 16 García-Plazaola J. I., Becerril J. M.. A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols.  Phytochemical Analysis. (1999);  10 307-313
  • 17 García-Plazaola J. I., Hernández A., Becerril J. M.. Antioxidant and pigment composition during autumnal leaf senescence in woody deciduous species differing in their ecological traits.  Plant Biology. (2003);  5 557-566
  • 18 García-Plazaola J. I., Becerril J. M., Hernández A., Niinemets U., Kollist H.. Acclimation of antioxidant pools to the light environment in a natural forest canopy.  New Phytologist. (2004);  163 87-97
  • 19 Haldimann P., Feller U.. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase.  Plant, Cell and Environment. (2004);  27 1169-1183
  • 20 Hansen U., Schneiderheinze J., Stadelmann S., Rank B.. The α-tocoperol content of leaves of pedunculate oak (Quercus robur L.) - variation over the growing season and along the vertical light gradient in the canopy.  Journal of Plant Physiology. (2003);  160 91-96
  • 21 Havaux M.. Carotenoids as membrane stabilizers in chloroplasts.  Trends in Plant Science. (1998);  3 147-151
  • 22 Havaux M., Lütz C., Grimm B.. Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols.  Plant Physiology. (2003);  132 300-310
  • 23 Holtum J. A. M., Winter K.. Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle.  Trees. (2005);  19 545-551
  • 24 Horton P., Ruban A. V., Walters R. G.. Regulation of light harvesting in green plants.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1996);  47 655-684
  • 25 Jifon J. L., Syvertsen J. P.. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves.  Tree Physiology. (2003);  23 119-127
  • 26 Königer M., Winter K.. Carotenoid composition and photon-use efficiency of photosynthesis in Gossypium hirsutum L. grown under conditions of slightly suboptimum leaf temperatures and high levels of irradiance.  Oecologia. (1991);  87 349-356
  • 27 Krause G. H.. Photoinhibition induced by low temperatures. Baker, N. R. and Bowyer, J. R., eds. Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field. Oxford; BIOS Scientific Publishers (1994): 331-348
  • 28 Krause G. H., Jahns P.. Pulse amplitude modulated chlorophyll fluorometry and its application in plant science. Green, B. R. and Parson, W. W., eds. Light-Harvesting Antennas in Photosynthesis. Dordrecht; Kluwer Academic Publishers (2003): 373-399
  • 29 Krause G. H., Jahns P.. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. Papageorgiou, G. C. and Govindjee, eds. Chlorophyll a Fluorescence: A Signature of Photosynthesis. The Netherlands; Springer (2004): 463-495
  • 30 Krause G. H., Weis E.. Chlorophyll fluorescence and photosynthesis: the basics.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1991);  42 313-349
  • 31 Krause G. H., Winter K.. Photoinhibition of photosynthesis in plants growing in natural tropical forest gaps. A chlorophyll fluorescence study.  Botanica Acta. (1996);  109 456-462
  • 32 Krause G. H., Virgo A., Winter K.. High susceptibility to photoinhibition of young leaves of tropical forest trees.  Planta. (1995);  197 583-591
  • 33 Krause G. H., Schmude S., Garden H., Koroleva O. Y., Winter K.. Effects of solar ultraviolet radiation on the potential efficiency of photosystem II in leaves of tropical plants.  Plant Physiology. (1999);  121 1349-1358
  • 34 Krause G. H., Koroleva O. Y., Dalling J. W., Winter K.. Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps.  Plant, Cell and Environment. (2001);  24 1345-1352
  • 35 Krause G. H., Gallé A., Gademann R., Winter K.. Capacity of protection against ultraviolet radiation in sun and shade leaves of tropical forest plants.  Functional Plant Biology. (2003);  30 533-542
  • 36 Krause G. H., Grube E., Koroleva O. Y., Barth C., Winter K.. Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation?.  Functional Plant Biology. (2004);  31 743-756
  • 37 Laing W. A., Greer D. H., Schnell T. A.. Photoinhibition of photosynthesis causes a reduction in vegetative growth rates of dwarf bean (Phaseolus vulgaris) plants.  Australian Journal of Plant Physiology. (1995);  22 511-520
  • 38 Long S. P., Humphries S., Falkowski P. G.. Photoinhibition of photosynthesis in nature.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1994);  45 633-662
  • 39 Matsuki S., Ogawa K., Tanaka A., Hara T.. Morphological and photosynthetic responses of Quercus crispula seedlings to high-light conditions.  Tree Physiology. (2003);  23 769-775
  • 40 McKinnon L. M., Mitchell A. K.. Photoprotection, not increased growth, characterizes the response of Engelmann spruce (Picea engelmannii) seedlings to high light, even when resources are plentiful.  New Phytologist. (2003);  160 69-79
  • 41 Muraoka H., Tang Y. H., Terashima I., Koizumi H., Washitani I.. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression in Arisaema heterophyllum in natural high light.  Plant, Cell and Environment. (2000);  23 235-250
  • 42 Nicolás E., Torrecillas A., Dell'Amico J., Alarcón J. J.. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies.  Journal of Plant Physiology. (2005);  162 439-447
  • 43 Ögren E., Rosenquist E.. On the significance of photoinhibition of photosynthesis in the field and its generality among species.  Photosynthesis Research. (1992);  33 63-71
  • 44 Ögren E., Sjöström M.. Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy.  Planta. (1990);  181 560-567
  • 45 Raschke K., Resemann A.. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity.  Planta. (1986);  168 546-558
  • 46 Tevini M., Steinmüller D.. Composition and function of plastoglobuli. II. Lipid composition of leaves and plastoglobuli during beech senescence.  Planta. (1985);  163 91-96
  • 47 Thiele A., Krause G. H.. Xanthophyll cycle and thermal energy dissipation in photosystem II: relationship between zeaxanthin formation, energy-dependent fluorescence quenching and photoinhibition.  Journal of Plant Physiology. (1994);  144 324-332
  • 48 Thiele A., Schirwitz K., Winter K., Krause G. H.. Increased xanthophyll cycle activity and reduced D1 protein inactivation related to photoinhibition in two plant systems acclimated to excess light.  Plant Science. (1996);  115 237-250
  • 49 Thiele A., Winter K., Krause G. H.. Low inactivation of D1 protein of photosystem II in young canopy leaves of Anacardium excelsum under high-light stress.  Journal of Plant Physiology. (1997);  151 286-292
  • 50 Thiele A., Krause G. H., Winter K.. In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest.  Australian Journal of Plant Physiology. (1998);  25 189-195
  • 51 Werner C., Correia O., Beyschlag W.. Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem.  Functional Plant Biology. (2002);  29 999-1011
  • 52 Winter K., Königer M.. Dry matter production and photosynthetic capacity in Gossypium hirsutum L. under conditions of slightly suboptimum temperatures and high levels of irradiance.  Oecologia. (1991);  87 190-197
  • 53 Zhu X. G., Ort D. R., Whitmarsh J., Long S. P.. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.  Journal of Experimental Botany. (2004);  55 1167-1175

G. H. Krause

Institute of Plant Biochemistry
Heinrich Heine University Düsseldorf

Universitätsstraße 1

40225 Düsseldorf

Germany

Email: ghkrause@uni-duesseldorf.de

Editor: W. W. Adams III