Subscribe to RSS
DOI: 10.1055/s-2005-872705
Georg Thieme Verlag Stuttgart KG · New York
Fine-Tuning Plant Defence Signalling: Salicylate versus Jasmonate
Publication History
Received: February 7, 2005
Accepted: July 29, 2005
Publication Date:
22 December 2005 (online)

Abstract
Plant defences against pathogens and herbivorous insects form a comprehensive network of interacting signal transduction pathways. The signalling molecules salicylic acid (SA) and jasmonic acid (JA) play important roles in this network. SA is involved in signalling processes providing systemic acquired resistance (SAR), protecting the plant from further infection after an initial pathogen attack. SAR is long-lasting and provides broad spectrum resistance to biotrophic pathogens that feed on a living host cell. The regulatory protein NPR1 is a central positive regulator of SAR. SA-activated NPR1 localizes to the nucleus where it interacts with TGA transcription factors to induce the expression of a large set of pathogenesis-related proteins that contribute to the enhanced state of resistance. In a distinct signalling process, JA protects the plant from insect infestation and necrotrophic pathogens that kill the host cell before feeding. JA activates the regulatory protein COI1 that is part of the E3 ubiquitin ligase-containing complex SCFCOI1, which is thought to derepress JA-responsive genes involved in plant defence. Both synergistic and antagonistic interactions have been observed between SA- and JA-dependent defences. NPR1 has emerged as a critical modulator of cross-talk between the SA and JA signal and is thought to aid in fine tuning defence responses specific to the encountered attacker. Here we review SA- and JA-dependent signal transduction and summarize our current understanding of the molecular mechanisms of cross-talk between these defences.
Key words
Salicylic acid - jasmonic acid - systemic acquired resistance - pathogenesis-related genes - NPR1 - cross-talk.
References
- 1 Aravind L., Koonin E. V.. Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. Journal of Molecular Biology. (1999); 285 1353-1361
- 2 Baldwin Jr. A. S.. The NF-κB and IκB proteins: new discoveries and insights. Annual Review of Immunology. (1996); 14 649-683
- 3 Bell E., Mullet J. E.. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiology. (1993); 103 1133-1137
- 4 Bork P.. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally?. Proteins. (1993); 17 363-374
- 5 Cao H., Bowling S. A., Gordon A. S., Dong X.. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell. (1994); 6 1583-1592
- 6 Cao H., Glazebrook J., Clarke J. D., Volko S., Dong X.. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. (1997); 88 57-63
- 7 Cao H., Li X., Dong X.. Generation of a broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the USA. (1998); 95 6531-6536
- 8 Chen Z., Silva H., Klessig D. F.. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. (1993); 262 1883-1886
- 9 Chern M.-S., Fitzgerald H. A., Yadav R. C., Canlas P. E., Dong X., Ronald P. C.. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant Journal. (2001); 27 101-113
- 10 Conrath U., Thulke O., Katz V., Schwindling S., Kohler A.. Priming as a mechanism in induced systemic resistance of plants. European Journal Plant Pathology. (2001); 107 113-119
- 11 Creelman R. A., Mulpuri R..
The Oxylipin Pathway in Arabidopsis. Somerville C. R. and Meyerowitz E. M., eds. The Arabidopsis Book. Rockville, MD; American Society of Plant Biologists (2002): 1-24 - 12 Cui J., Bahrami A. K., Pringle E. G., Hernandez-Guzman G., Bender C. L., Pierce N. E., Ausubel F. M.. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proceedings of the National Academy of Sciences of the USA. (2005); 102 1791-1796
- 13 Delaney T. P., Friedrich L., Ryals J. A.. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of the National Academy of Sciences of the USA. (1995); 92 6602-6606
- 14 Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J.. A central role of salicylic acid in plant disease resistance. Science. (1994); 266 1247-1250
- 15 Després C., Chubak C., Rochon A., Clark R., Bethune T., Desveaux D., Fobert P. R.. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell. (2003); 15 2181-2191
- 16 Després C., DeLong C., Glaze S., Liu E., Fobert P. R.. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell. (2000); 12 279-290
- 17 Devoto A., Nieto-Rostro M., Xie D., Ellis C., Harmston R., Patrick E., Davis J., Sherratt L., Coleman M., Turner J. G.. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant Journal. (2002); 32 457-466
- 18 Doares S. H., Narváez-VásQuez J., Conconi A., Ryan C. A.. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiology. (1995); 108 1741-1746
- 19 Doherty H. M., Selvendran R. R., Bowles D. J.. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiological and Molecular Plant Pathology. (1988); 33 377-384
- 20 Durrant W. E., Dong X.. Systemic acquired resistance. Annual Review of Phytopathology. (2004); 42 185-209
- 21 Ellis C., Karafyllidis I., Wasternack C., Turner J. G.. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell. (2002); 14 1557-1566
- 22 Ellis C., Turner J. G.. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell. (2001); 13 1025-1033
- 23 Fan W., Dong X.. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. . Plant Cell. (2002); 14 1377-1389
- 24 Farmer E. E., Alméras E., Krishnamurthy V.. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology. (2003); 6 372-378
- 25 Felton G. W., Korth K. L.. Trade-offs between pathogen and herbivore resistance. Current Opinion in Plant Biology. (2000); 3 309-314
- 26 Felton G. W., Korth K. L., Bi J. L., Wesley S. V., Huhman D. V., Mathews M. C., Murphy J. B., Lamb C., Dixon R. A.. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology. (1999); 9 317-320
- 27 Feng S., Ma L., Wang X., Xie D., Dinesh-Kumar S. P., Wei N., Deng X. W.. The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell. (2003); 15 1083-1094
- 28 Feussner I., Wasternack C.. The lipoxygenase pathway. Annual Review of Plant Biology. (2002); 53 275-297
- 29 Feys B. J., Benedetti C. E., Penfold C. N., Turner J. G.. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell. (1994); 6 751-759
- 30 Fidantsef A. L., Stout M. J., Thaler J. S., Duffey S. S., Bostock R. M.. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. . Physiological and Molecular Plant Pathology. (1999); 54 97-114
- 31 Friedrich L., Lawton K., Ruess W., Masner P., Specker N., Gut Rella M., Meier B., Dincher S., Staub T., Métraux J.-P., Kessmann H., Ryals J.. A benzothiadiazole derivate induces systemic acquired resistance in tobacco. Plant Journal. (1996); 10 61-70
- 32 Furukawa M., He Y. J., Borchers C., Xiong Y.. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nature Cell Biology. (2003); 5 1001-1007
- 33 Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessman H., Ryals J.. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. (1993); 261 754-756
- 34 Glazebrook J., Rogers E. E., Ausubel F. M.. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics. (1996); 143 973-982
- 35 Görlach J., Volrath S., Knauf-Beiter G., Hengy G., Beckhove U., Kogel K. H., Oostendorp M., Staub T., Ward E., Kessmann H., Ryals J.. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell. (1996); 8 629-643
- 36 Harms K., Ramirez I., Peña-Cortés H.. Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiology. (1998); 118 1057-1065
- 37 Hatada E. N., Krappmann D., Scheidereit C.. NF-κB and the innate immune response. Current Opinion in Immunology. (2000); 12 52-58
- 38 Hilpert B., Bohlmann H., op den Camp R. O., Przybyla D., Miersch O., Buchala A., Apel K.. Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that constitutively activate the octadecanoid pathway and form necrotic microlesions. Plant Journal. (2001); 26 435-446
- 39 Holk A., Rietz S., Zahn M., Quader H., Scherer G. F. E.. Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiology. (2002); 130 90-101
- 40 Ishiguro S., Kawai-Oda A., Ueda J., Nishida I., Okada K.. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. . Plant Cell. (2001); 13 2191-2209
- 41 Johnson C., Boden E., Arias J.. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. . Plant Cell. (2003); 15 1846-1858
- 42 Kessler A., Baldwin I. T.. Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology. (2002); 53 299-328
- 43 Kinkema M., Fan W., Dong X.. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell. (2000); 12 2339-2350
- 44 Kloek A. P., Verbsky M. L., Sharma S. B., Schoelz J. E., Vogel J., Klessig D. F., Kunkel B. N.. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant Journal. (2001); 26 509-522
- 45 Kohler A., Schwindling S., Conrath U.. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. . Plant Physiology. (2002); 128 1046-1056
- 46 Kubigsteltig I., Laudert D., Weiler E. W.. Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta. (1999); 208 463-471
- 47 Laudert D., Pfannschmidt U., Lottspeich F., Hollander-Czytko H., Weiler E. W.. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Molecular Biology. (1996); 31 323-335
- 48 Laudert D., Weiler E. W.. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant Journal. (1998); 15 675-684
- 49 Lawton K. A., Friedrich L., Hunt M., Weymann K., Delaney T., Kessmann H., Staub T., Ryals J.. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal. (1996); 10 71-82
- 50 Lawton K. A., Weymann K., Friedrich L., Vernooij B., Uknes S., Ryals J.. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Molecular Plant Microbe Interaction. (1995); 8 863-870
- 51 Lebel E., Heifetz P., Thorne L., Uknes S., Ryals J., Ward E.. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. . Plant Journal. (1998); 16 223-233
- 52 Li J., Brader G., Palva E. T.. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell. (2004 a); 16 319-331
- 53 Li L., Zhao Y., McCaig B. C., Wingerd B. A., Wang J., Whalon M. E., Pichersky E., Howe G. A.. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell. (2004 b); 16 126-143
- 54 Malamy J., Carr J. P., Klessig D. F., Raskin I.. Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science. (1990); 250 1004-1006
- 55 Maleck K., Levine A., Eulgem T., Morgan A., Schmid J., Lawton K. A., Dangl J. L., Dietrich R. A.. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics. (2000); 26 403-410
- 56 Métraux J.-P., Ahl-Goy P., Staub T., Speich J., Steinemann A., Ryals J., Ward E..
Induced resistance in cucumber in response to 2.6-dichloroisonicotinic acid and pathogens. Hennecke H. and Verma D. P. S., eds. Advances in Molecular Genetics of Plant-Microbe Interactions. Dordrecht, The Netherlands; Kluwer Academic Publishers (1991): 432-439 - 57 Métraux J.-P., Signer H., Ryals J., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W., Inverardi B.. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science. (1990); 250 1004-1006
- 58 Mou Z., Fan W., Dong X.. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell. (2003); 113 935-944
- 59 Mussig C., Biesgen C., Lisso J., Uwer U., Weiler E. W., Altmann T.. A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between Brassinosteroid-action and Jasmonic-acid synthesis. Journal of Plant Physiology. (2000); 157 143-152
- 60 Newton R., Kuitert L. M., Bergmann M., Adcock I. M., Barnes P. J.. Evidence for involvement of NF-κB in the transcriptional control of COX-2 gene expression by IL-1β. Biochemical and Biophysical Research Communications. (1997); 237 28-32
- 61 Niggeweg R., Thurow C., Kegler C., Gatz C.. Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. Journal of Biological Chemistry. (2000); 275 19897-19905
- 62 Niki T., Mitsuhara I., Seo S., Ohtsuba N., Ohashi Y.. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiology. (1998); 39 500-507
- 63 O'Donnell P. J., Schmelz E., Block A., Miersch O., Wasternack C., Jones J. B., Klee H. J.. Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiology. (2003); 133 1181-1189
- 64 Peña-Cortés H., Albrecht T., Prat S., Weiler E. W., Willmitzer L.. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta. (1993); 191 123-128
- 65 Pieterse C. M. J., Ton J., Van Loon L. C.. Cross-talk between plant defence signalling pathways: boost or burden? AgBiotechNet 3, ABN 068, www.agbiotechnet.com. (2001 a)
- 66 Pieterse C. M. J., Van Pelt J. A., Van Wees S. C. M., Ton J., Léon-Kloosterziel K. M., Keurentjes J. J. B., Verhagen B. W. M., Knoester M., Van der Sluis I., Bakker P. A. H. M., Van Loon L. C.. Rhizobacteria-mediated induced systemic resistance: triggering, signalling, and expression. European Journal of Plant Pathology. (2001 b); 107 51-61
- 67 Pieterse C. M. J., Van Wees S. C. M., Ton J., van Pelt J. A., Van Loon L. C.. Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biology. (2002); 4 535-544
- 68 Pieterse C. M. J., Van Wees S. C. M., van Pelt J. A., Knoester M., Laan R., Gerrits H., Weisbeek P. J., van Loon L. C.. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. . Plant Cell. (1998); 10 1571-1580
- 69 Pintard L., Willems A., Peter M.. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. The Embo Journal. (2004); 23 1681-1687
- 70 Pintard L., Willis J. H., Willems A., Johnson J. L., Srayko M., Kurz T., Glaser S., Mains P. E., Tyers M., Bowerman B., Peter M.. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature. (2003); 425 311-316
- 71 Preston C. A., Lewandowski C., Enyedi A. J., Baldwin I. T.. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta. (1999); 209 87-95
- 72 Reymond P., Weber H., Damond M., Farmer E. E.. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. . Plant Cell. (2000); 12 707-720
- 73 Ryals J., Neuenschwander U., Willits M., Molina A., Steiner H. Y., Hunt M.. Systemic acquired resistance. Plant Cell. (1996); 8 1809-1819
- 74 Ryals J., Weymann K., Lawton K., Friedrich L., Ellis D., Steiner H. Y., Johnson J., Delaney T. P., Jesse T., Vos P., Uknes S.. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IκB. Plant Cell. (1997); 9 425-439
- 75 Sanders P. M., Lee P. Y., Biesgen C., Boone J. D., Beals T. P., Weiler E. W., Goldberg R. B.. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell. (2000); 12 1041-1062
- 76 Schaller F., Biesgen C., Mussig C., Altmann T., Weiler E. W.. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta. (2000); 210 979-984
- 77 Shah J., Kachroo P., Klessig D. F.. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell. (1999); 11 191-206
- 78 Shah J., Tsui F., Klessig D. F.. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Molecular Plant Microbe Interaction. (1997); 10 69-78
- 79 Spoel S. H., Koornneef A., Claessens S. M. C., Korzelius J. P., Van Pelt J. A., Mueller M. J., Buchala A. J., Métraux J.-P., Brown R., Kazan K., Van Loon L. C., Dong X., Pieterse C. M. J.. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell. (2003); 15 760-770
- 80 Staswick P. E., Su W., Howell S. H.. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences of the USA. (1992); 89 6837-6840
- 81 Staswick P. E., Tiryaki I.. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. . Plant Cell. (2004); 16 2117-2127
- 82 Staswick P. E., Tiryaki I., Rowe M. L.. Jasmonate response locus Jar1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell. (2002); 14 1405-1415
- 83 Staswick P. E., Yuen G. Y., Lehman C. C.. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. . Plant Journal. (1998); 15 747-754
- 84 Stelmach B. A., Muller A., Hennig P., Gebhardt S., Schubert-Zsilavecz M., Weiler E. W.. A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. Journal of Biological Chemistry. (2001); 276 12832-12838
- 85 Stenzel I., Hause B., Miersch O., Kurz T., Maucher H., Weichert H., Ziegler J., Feussner I., Wasternack C.. Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Molecular Biology. (2003); 51 895-911
- 86 Sticher L., Mauch-Mani B., Metraux J. P.. Systemic acquired resistance. Annual Review of Phytopathology. (1997); 35 235-270
- 87 Stintzi A., Browse J.. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences of the USA. (2000); 97 10625-10630
- 88 Stintzi A., Weber H., Reymond P., Browse J., Farmer E. E.. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proceedings of the National Academy of Sciences of the USA. (2001); 98 12837-12842
- 89 Stout M. J., Fidantsef A. L., Duffey S. S., Bostock R. M.. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology. (1999); 54 115-130
- 90 Subramaniam R., Desveaux D., Spickler C., Michnick S. W., Brisson N.. Direct visualization of protein interactions in plant cells. Nature Biotechnology. (2001); 19 769-772
- 91 Thaler J. S., Fidantsef A. L., Duffey S. S., Bostock R. M.. Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology. (1999); 25 1597-1609
- 92 Thaler J. S., Karban R., Ullman D. E., Boege K., Bostock R. M.. Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia. (2002); 131 227-235
- 93 Thomma B. P. H. J., Eggermont K., Penninckx I. A. M. A., Mauch-Mani B., Vogelsang R., Cammue B. P. A., Broekaert W. F.. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the USA. (1998); 95 15107-15111
- 94 Tiryaki I., Staswick P. E.. An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiology. (2002); 130 887-894
- 95 Turner J. G., Ellis C., Devoto A.. The jasmonate signal pathway. Plant Cell. (2002); 14 S153-S164
- 96 Van Wees S. C. M., de Swart E. A., van Pelt J. A., van Loon L. C., Pieterse C. M. J.. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA. (2000); 97 8711-8716
- 97 Van Wees S. C. M., Luijendijk M., Smoorenburg I., van Loon L. C., Pieterse C. M. J.. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology. (1999); 41 537-549
- 98 Vanacker H., Carver T. L. W., Foyer C. H.. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiology. (2000); 123 1289-1300
- 99 Verhagen B. W. M., Glazebrook J., Zhu T., Chang H. S., van Loon L. C., Pieterse C. M. J.. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. . Molecular Plant Microbe Interaction. (2004); 17 895-908
- 100 Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Métraux J.-P., Ryals J. A.. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. (1991); 3 1085-1094
- 101 Xie D. X., Feys B. F., James S., Nieto-Rostro M., Turner J. G.. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science. (1998); 280 1091-1094
- 102 Xu L., Liu F., Lechner E., Genschik P., Crosby W. L., Ma H., Peng W., Huang D., Xie D.. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. . Plant Cell. (2002); 14 1919-1935
- 103 Xu L., Liu F., Wang Z., Peng W., Huang R., Huang D., Xie D.. An Arabidopsis mutant cex1 exhibits constant accumulation of jasmonate-regulated AtVSP, Thi2.1 and PDF1.2. FEBS Letters. (2001); 494 161-164
- 104 Xu L., Wei Y., Reboul J., Vaglio P., Shin T. H., Vidal M., Elledge S. J., Harper J. W.. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature. (2003); 425 316-321
- 105 Yu D., Chen C., Chen Z.. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell. (2001); 13 1527-1540
- 106 Zhang Y., Fan W., Kinkema M., Li X., Dong X.. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proceedings of the National Academy of Sciences of the USA. (1999); 96 6523-6528
- 107 Zhang Y., Tessaro M. J., Lassner M., Li X.. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell. (2003); 15 2647-2653
- 108 Zhou J. M., Trifa Y., Silva H., Pontier D., Lam E., Shah J., Klessig D. F.. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molecular Plant Microbe Interaction. (2000); 13 191-202
- 109 Ziegler J., Stenzel I., Hause B., Maucher H., Hamberg M., Grimm R., Ganal M., Wasternack C.. Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonates. Journal of Biological Chemistry. (2000); 275 19132-19138
S. H. Spoel
Developmental, Cell, and Molecular Biology Group
Department of Biology
Duke University
P.O. Box 91000
Durham, North Carolina 27708
USA
Email: shs3@duke.edu
Editor: B. Schulz