References
For examples, see:
<A NAME="RU06205ST-1A">1a</A>
Townsend LB.
Chemistry of Nucleosides and Nucleotides
Plenum Press;
New York:
1988.
<A NAME="RU06205ST-1B">1b</A>
Nucleosides and Nucleotides as Antitumor and Antiviral Agents
Chu CK.
Baker DC.
Plenum Press;
New York:
1993.
<A NAME="RU06205ST-1C">1c</A>
Haraguchi K.
Itoh Y.
Tanaka H.
J. Synth. Org. Chem. Jpn.
2003,
61:
974
<A NAME="RU06205ST-1D">1d</A>
Matsuda A.
Sasaki T.
Cancer Sci.
2004,
95:
105
<A NAME="RU06205ST-2A">2a</A>
Ruth TL.
Oligonucleotides and their Analogues
IRL Press;
London:
1991.
<A NAME="RU06205ST-2B">2b</A>
Giese B.
Imwinkelried P.
Petretta M.
Synlett
1994,
1003 ; and references cited therein
For review see for example:
<A NAME="RU06205ST-3A">3a</A>
Junk T.
Catallo WJ.
Chem. Soc. Rev.
1997,
26:
401
<A NAME="RU06205ST-3B">3b</A>
Elander N.
Jones JR.
Lu S.-Y.
Stone-Elander S.
Chem. Soc. Rev.
2000,
29:
239
<A NAME="RU06205ST-4">4</A> Very recently an attractive method for monitoring reaction kinetics using 2H NMR was reported:
Durazo A.
Abu-Omar MM.
Chem. Commun.
2002,
66
<A NAME="RU06205ST-5A">5a</A>
Gani D.
Young DW.
J. Chem. Soc., Chem. Commun.
1983,
576
<A NAME="RU06205ST-5B">5b</A>
Gani D.
Hitchcock PB.
Young DW.
J. Chem. Soc., Chem. Commun.
1983,
898
<A NAME="RU06205ST-6A">6a</A>
Kawashima E.
Aoyama Y.
Sekine T.
Miyahara M.
Radwan MF.
Nakamura E.
Kainosho M.
Kyogoku Y.
Ishido Y.
J. Org. Chem.
1995,
60:
6980
<A NAME="RU06205ST-6B">6b</A>
Földesi A.
Trifonova A.
Dinya Z.
Chattopadhyaya J.
J. Org. Chem.
2001,
66:
6560
<A NAME="RU06205ST-7A">7a</A>
Hill RK.
Ledford ND.
Renbaum LA.
J. Labelled Compd. Radiopharm.
1985,
22:
143
<A NAME="RU06205ST-7B">7b</A>
Fujii T.
Saito T.
Kizu K.
Hayashibara H.
Kumazawa Y.
Nakajima S.
Fujisawa T.
Chem. Pharm. Bull.
1991,
39:
301
<A NAME="RU06205ST-7C">7c</A>
Sako M.
Hayashi T.
Hirota K.
Maki Y.
Chem. Pharm. Bull.
1992,
40:
1656
<A NAME="RU06205ST-8A">8a</A>
Guroff G.
Reifsnyder CA.
Daly J.
Biochem. Biophys. Res. Commun.
1966,
24:
720
<A NAME="RU06205ST-8B">8b</A>
Santi DV.
Brewer CF.
J. Am. Chem. Soc.
1968,
90:
6236
<A NAME="RU06205ST-8C">8c</A>
Maeda M.
Saneyoshi M.
Kawazoe Y.
Chem. Pharm. Bull.
1971,
19:
1641
<A NAME="RU06205ST-8D">8d</A>
Maeda M.
Kawazoe Y.
Tetrahedron Lett.
1975,
19:
1643
<A NAME="RU06205ST-8E">8e</A>
Wong JL.
Keck JH.
J. Chem Soc., Chem. Commun.
1975,
125:
<A NAME="RU06205ST-8F">8f</A>
Kiritani R.
Asano T.
Fujita S.
Dohmaru T.
Kawanishi T.
J. Labelled Compd. Radiopharm.
1986,
23:
207
<A NAME="RU06205ST-8G">8g</A>
Roèek J.
Sváta V.
Leetick L.
Collect. Czech. Chem. Commun.
1985,
50:
1244
<A NAME="RU06205ST-9">9</A>
D2 gas [¥ 31300/10 L of D2 gas (Aldrich 36840-7) in lecture bottle] is purchased as a lecture bottle or a cylinder
charged by high-pressure.
<A NAME="RU06205ST-10">10</A>
Sajiki H.
Hattori K.
Aoki F.
Yasunaga K.
Hirota K.
Synlett
2002,
1149
<A NAME="RU06205ST-11A">11a</A>
Sajiki H.
Aoki F.
Esaki H.
Maegawa T.
Hirota K.
Org. Lett.
2004,
6:
1485
<A NAME="RU06205ST-11B">11b</A>
Maegawa T.
Akashi A.
Esaki H.
Aoki F.
Sajiki H.
Hirota K.
Synlett
2005,
845
Matsubara et al. also reported interesting Pd/C-catalyzed H-D exchange reactions under
hydrothermal conditions, see:
<A NAME="RU06205ST-12A">12a</A>
Matsubara S.
Yokota Y.
Oshima K.
Chem. Lett.
2004,
33:
294
<A NAME="RU06205ST-12B">12b</A>
Yamamoto M.
Yokota Y.
Oshima K.
Matsubara S.
Chem. Commun.
2004,
1714
<A NAME="RU06205ST-12C">12c</A>
Yamamoto M.
Oshima K.
Matsubara S.
Org. Lett.
2004,
6:
5015
<A NAME="RU06205ST-13">13</A>
Typical Procedure for Deuteration of Adenosine (Table 1, entry 3): Adenosine (66.8 mg, 0.25 mmol) and 10% Pd/C (6.7 mg, 10 wt% of the substrate, Aldrich)
in D2O (1 mL) was stirred at 160 °C in a sealed tube under a H2 atmosphere for 24 h. After cooling, the reaction mixture was filtered using a membrane
filter (Millipore Millex®-LG). The filtered catalyst was washed with boiling water (50 mL) and the combined
filtrates were concentrated in vacuo to give adenosine-d
2 as a white powder (66.3 mg, 98%). The deuterium content (%) was determined by 1H NMR using 3-trimethylsilyl-1-propanesulfonic acid sodium salt (DSS) as an internal
standard and confirmed by mass spectroscopy. [α]D
20 -55 (c 0.38, H2O) [adenosine Lit.16 [α]D
11 -62 (c 0.71, H2O)]. 1H NMR (400 MHz, DMSO-d
6): δ = 8.37 (s, 0.053 H), 8.12 (s, 0.042 H), 7.34-7.30 (br s, 2 H), 5.90 (d, J = 6.4 Hz, 1 H), 5.45-5.41 (m, 2 H), 5.20 (d, J = 4.9 Hz, 1 H), 4.63 (dd, J = 4.9, 6.4 Hz, 1 H), 4.16 (dd, J = 3.4, 4.4 Hz, 1 H), 3.99 (dd, J = 3.4, 3.4 Hz, 1 H), 3.72-3.67 (m, 1 H), 3.60-3.54 (m, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 156.2, 152.3 (small peak), 149.0, 139.9 (small peak), 119.3, 87.9, 85.9, 73.4,
70.6, 61.6. 2H NMR (400 MHz, DMSO): δ = 8.02 (br). MS (ES+): m/z (%) = 269 (3) [M + 2].
<A NAME="RU06205ST-14">14</A>
Specific rotations of nucleosides: Table
[1]
, entry 2 [a]D
19 -60 (c 0.38, H2O) {adenosine Lit.16 [α]D
11 -62 (c 0.71, H2O)}; Table
[1]
, entry 3 [α]D
20 -55 (c 0.38, H2O) {adenosine Lit.16 [α]D
11 -62 (c 0.71, H2O)}; Table
[1]
, entry 4 [α]D
20 -19 (c 0.36, CH3OH) {deoxyadenosine [α]D
20 -20 (c 0.36, CH3OH)}; Table
[2]
, entry 1 [α]D
20 -59 (c 0.25, 0.02 N NaOH) {guanosine [α]D
20 -61 (c 0.30, 0.02 N NaOH)}; Table
[2]
, entry 2 [α]D
21 -46 (c 0.34, H2O) {inosine Lit.16 [α]D
18 -49 (c 0.9, H2O)}; Table
[3]
, entry 4 [α]D
21 +5 (c 0.27, H2O) {uridine Lit.16 [α]D
20 +4 (c 2)}; Table
[3]
, entry 7 [α]D
21 +25 (c 0.26, H2O) {cytidine Lit.16 [α]D
25 +31 (c 0.7, H2O)}; 1 [α]D
21 +18 (c 0.74, CH3Cl) {2′,3′,5′-tris-O-TBDMS-uridine [α]D
22 +22 (c 0.83, CH3Cl)}.
<A NAME="RU06205ST-15">15</A> Although Matsubara et al. recently reported quite interesting H-D exchange reaction
of primary alcohols at the α-position using RuCl2(PPh3)2 as a catalyst, we observed no competitive deuterium incorporation into the sugar
moieties, see:
Takahashi M.
Oshima K.
Matsubara S.
Chem. Lett.
2005,
34:
192
<A NAME="RU06205ST-16">16</A>
The Merck Index 13th Ed.
Merck & Co., Inc.;
Whitehouse Station:
2001.