Abstract
In this study, we compare the relative growth rate (RGR) and biomass allocation of
10 woody species (5 deciduous and 5 evergreen) from the Mediterranean region using
phylogenetic independent contrasts (PICs) to test if these two functional groups differ
in these traits. In general, the results were similar when using PICs or without taking
into account phylogenetic relations. Deciduous species had a higher RGR than evergreen
species, due to the higher net assimilation rate (NAR). Deciduous species had a higher
specific leaf area (SLA) but a lower leaf mass ratio (LMR), resulting in a similar
LAR for deciduous and evergreen species (LAR = SLA × LMR). In some cases, the use
of PICs revealed patterns that would not have appeared if phylogeny had been overlooked.
For example, there was no significant correlation between RGR and final dry mass (after
4 months of growth) but PICs revealed that there was a positive relation between these
two variables in all deciduous-evergreen pairs. In general, RGR decreased with time
and this temporal variation was due primarily to NAR variations (r = 0.79, p < 0.01), and also to variations in LAR (r = 0.69, p < 0.05). Considering the phylogeny, the only variable constantly different for all
deciduous-evergreen pairs was SLA. This result, and the fact that SLA was the best
correlated variable with RGR (r = 0.81, p < 0.01), reinforce the value of SLA as a variable closely associated to growth and
to the functional groups (deciduous vs. evergreen).
Key words
Leaf area ratio - net assimilation rate - specific leaf area - deciduous - evergreen.
References
- 1
Aerts R..
The advantages of being evergreen.
Trends in Ecology and Evolution.
(1995);
10
402-407
- 2
Antúnez I., Retamosa E. C., Villar R..
Relative growth rate in phylogenetically related deciduous and evergreen woody species.
Oecologia.
(2001);
128
172-180
- 3 Blanco E., Casado M. A., Costa M., Escribano R., García M., Genova M., Gómez A.,
Gómez F., Moreno J. C., Morla C., Regato P., Sainz H.. Los Bosques Ibéricos. Barcelona;
Editorial Planeta (1997)
- 4
Castro-Díez P., Montserrat-Martí G., Cornelissen J. H. C..
Trade-offs between phenology, relative growth rate, life form and seed mass among
22 Mediterranean woody species.
Plant Ecology.
(2003);
166
117-129
- 5
Castro-Díez P., Puyravaud J. P., Cornelissen J. H. C..
Leaf structure and anatomy as related to leaf mass per area variation in seedling
of a wide range of woody plant species and types.
Oecologia.
(2000);
124
476-486
- 6 Catalán-Bachiller G.. Semillas de Árboles y Arbustos Forestales. Madrid; ICONA (M.A.P.A.)
(1991)
- 7
Chabot B. F., Hicks D. J..
The ecology of leaf life spans.
Annual Review of Ecology and Systematics.
(1982);
13
229-259
- 8
Choe H. S., Chu C., Koch G., Gorharm J., Mooney H. A..
Seed weight and seed resources in relation to plant growth rate.
Oecologia.
(1988);
76
158-159
- 9 Cornelissen J. H. C., Castro-Díez P., Carnelli A. C..
Variation in relative growth rate among woody species: scaling up. Lambers, H., Poorter, H., and van Vuuren, M., eds. Inherent variation in plant growth.
Physiological mechanisms and ecological consequences. Leiden; Backhuys Publishers
(1998): 363-392
- 10
Cornelissen J. H. C., Castro-Díez P., Hunt R..
Seedling growth, allocation and leaf attributes in a wide range of woody plant species
and types.
Journal of Ecology.
(1996);
84
755-765
- 11
Eamus D., Myers B., Duff G., Williams R..
A cost-benefit analysis of leaves of eight Australian savanna tree species of differing
leaf life-span.
Photosynthetica.
(1999);
36
573-586
- 12
Freckleton R. P..
Phylogenetic tests of ecological and evolutionary hypotheses: checking for phylogenetic
independence.
Functional Ecology.
(2000);
14
129-134
- 13 Galán-Cela P., Gamarra Gamarra R., García Viñas J. I.. Arboles y Arbustos de la
Península Ibérica e Islas Baleares. Madrid; Ediciones Jaguar (2000)
- 14
Garnier E..
Growth analysis of congeneric annual and perennial grass species.
Journal of Ecology.
(1992);
80
665-675
- 15 Harvey P. H., Pagel M. D.. The Comparative Method in Evolutionary Biology. Oxford;
Oxford University Press (1991)
- 16
Hoffmann W. A., Franco A. C..
Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically
independent contrasts.
Journal of Ecology.
(2003);
91
475-484
- 17
Huante P., Rincón E., Acosta I..
Nutrient availability and growth rate of 34 woody species from a tropical deciduous
forest in Mexico.
Functional Ecology.
(1995);
9
849-858
- 18 Hunt R.. Plant Growth Curves. The Functional Approach to Plant Growth Analysis. London;
Edward Arnold (1982)
- 19
Lambers H., Poorter H..
Inherent variation in growth rate between higher plants: a search for physiological
causes and ecological consequences.
Advances in Ecological Research.
(1992);
23
187-261
- 20 Larcher W.. Physiological Plant Ecology. Berlin; Springer-Verlag (1995)
- 21
Lloret F., Casanovas C., Peñuelas J..
Seedling survival of mediterranean shrubland species in relation to root, shoot ratio,
seed size and water and nitrogen use.
Functional Ecology.
(1999);
13
210-216
- 22
Loveless A. R..
Further evidence to support a nutritional interpretation of sclerophylly.
Annals of Botany.
(1962);
26
551-561
- 23
Lusk C. H., Contreras O., Figueroa J..
Growth, biomass allocation and plant nitrogen concentration in Chilean temperate rainforest
tree seedlings: effects of nutrient availability.
Oecologia.
(1997);
109
49-58
- 24
Marañón T., Grubb P. J..
Physiological basis and ecological significance of the seed size and relative growth
rate relationship in Mediterranean annuals.
Functional Ecology.
(1993);
7
591-599
- 25
Monk C. D..
An ecological significance of evergreenness.
Ecology.
(1966);
47
504-505
- 26 Montoya R., López-Arias M.. La Red Europea de Seguimiento de Daños en los Bosques
(Nivel 1). España, 1987 - 1996. MMA. Madrid; Publicaciones del O. A. Parques Nacionales
(1997)
- 27 Montserrat-Martí G., Palacio-Blanco S., Millá-Gutierrez R..
Fenología y Características Funcionales de las Plantas Leñosas Mediterráneas. Valladares, F., ed. Madrid; Ministerio de Medio Ambiente, EGRAF, S. A. (2004): 129-162
- 28
Nielsen S. L., Enríquez S., Duarte C. M., Sand-Jensen K..
Scaling maximum growth rates across photosynthetic organisms.
Functional Ecology.
(1996);
10
167-175
- 29
Paz H., Martínez-Ramos M..
Seed mass and seedling performance within eight species of Psychotria (Rubiaceae).
Ecology.
(2003);
84
439-450
- 30
Poorter H., Garnier E..
Plant growth analysis: an evaluation of experimental design and computational methods.
Journal Experimental Botany.
(1996);
47
1343-1351
- 31
Poorter H., Pothmann P..
Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent
on ontogeny.
New Phytologist.
(1992);
120
159-166
- 32
Poorter H., Remkes C..
Leaf area ratio and net assimilation rate of 24 wild species differing in relative
growth rate.
Oecologia.
(1990);
83
553-559
- 33 Poorter H., Van der Werf A..
Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high
irradiance? A review of herbaceous species. Lambers, H., Poorter, H., and van Vuuren, M., eds. Inherent variation in plant growth.
Physiological mechanisms and ecological consequences. Leiden; Backhuys Publishers
(1998): 309-336
- 34 Reich P. B..
Variation among plant species in leaf turnover rates and associated traits: implications
for growth at all life stages. Lambers, H., Poorter, H., and van Vuuren, M., eds. Inherent variation in plant growth.
Physiological mechanisms and ecological consequences. Leiden; Backhuys Publishers
(1998): 467-487
- 35
Reich P. B., Buschena C., Tjoelker M. G., Wrage K., Knops J., Tilman D., Machado J. L..
Variation in growth rate and ecophysiology among 34 grassland and savanna species
under contrasting N supply: a test of functional group differences.
New Phytologist.
(2003);
157
617-631
- 36
Reich P. B., Walters M. B., Ellsworth D. S..
Leaf life-span in relation to leaf, plant, and stand characteristics among diverse
ecosystems.
Ecological Monograph.
(1992);
62
365-392
- 37
Reich P. B., Walters M. B., Ellsworth D. S..
From tropics to tundra: Global convergence in plant functioning.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
13730-13734
- 38
Ryser P., Wahl S..
Interspecific variation in RGR and the underlying traits among 24 grass species grown
in full daylight.
Plant Biology.
(2001);
3
426-436
- 39
Salleo S., Nardini A..
Sclerophylly: evolutionary advantage or mere epiphenomenon?.
Plant Biosystems.
(2000);
134
247-259
- 40
Saverimuttu T., Westoby M..
Components of variation in seedling potential relative growth rate: phylogenetically
independent contrasts.
Oecologia.
(1996);
105
281-285
- 41
Shipley B..
Trade-offs between net assimilation rate and specific leaf area in determining relative
growth rate: relationship with daily irradiance.
Functional Ecology.
(2002);
16
682-689
- 42
Shipley B., Peters R. H..
The allometry of seed weight and seedling relative growth rate.
Functional Ecology.
(1990);
4
523-529
- 43
Sobrado M. A..
Cost-benefit relationships in deciduous and evergreen leaves of tropical dry forest
species.
Functional Ecology.
(1991);
5
608-616
- 44 StatSoft Inc. .Statistica for Windows 5.1 (Computer program manual). Tulsa, OK,
USA; (1996)
- 45
Swanborough P., Westoby M..
Seedling relative growth rate and its components in relation to seed size: phylogenetically
independent contrasts.
Functional Ecology.
(1996);
10
176-184
- 46
Turner I. M..
Sclerophylly: primarily protective?.
Functional Ecology.
(1994);
8
669-675
- 47 Van Andel J., Biere A..
Ecological significance of variability in growth rate and plant productivity. Lambers. H. et al., eds. Causes and consequences of variation of growth rate and
productivity of higher plants. The Hague; SPB Academic Publishing bv (1989): 257-267
- 48
Villar R., Held A. A., Merino J..
Dark leaf respiration in light and darkness of an evergreen and a deciduous plant
species.
Plant Physiology.
(1995);
107
421-427
- 49
Villar R., Marañón T., Quero J. L., Panadero P., Arenas F., Lambers H..
Variation in growth rate of 20 Aegilops species (Poaceae) in the field: the importance of net assimilation rate or specific
leaf area depends on the time scale.
Plant and Soil.
(2005);
272
11-27
- 50
Villar R., Merino J..
Comparison of leaf construction costs in woody species with differing leaf life-spans
in contrasting ecosystems.
New Phytologist.
(2001);
151
213-226
- 51 Villar R., Ruiz-Robleto J., Quero J. L., Poorter H., Valladares F., Marañón T..
Tasas de Crecimiento en Especies Leñosas: Aspectos Funcionales e Implicaciones Ecológicas. Valladares, F., ed. Madrid; Ministerio de Medio Ambiente, EGRAF, S. A. (2004): 191-227
http://www.globimed.net/publicaciones/LibroEcoIndice.htm
- 52
Villar R., Veneklaas E. J., Jordano P., Lambers H..
Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species.
New Phytologist.
(1998);
140
425-437
- 53
Wright I. J., Westoby M..
Cross-species relationships between seedling relative growth rate, nitrogen productivity
and root vs leaf function in 28 Australian woody species.
Functional Ecology.
(2000);
14
97-107
- 54
Wright I. J., Reich P. B., Westoby M., Ackerly D. D., Baruch Z., Bongers F., Cavender-Bares J.,
Chapin F. S., Cornelissen J. H. C., Diemer M., Flexas J., Garnier E., Groom P. K.,
Gulias J., Hikosaka K., Lamont B. B., Lee T., Lee W., Lusk C., Midgley J. J., Navas M. L.,
Niinemets Ü., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V. I.,
Roumet C., Thomas S. C., Tjoelker M. G., Veneklaas E. J., Villar R..
The world-wide leaf economics spectrum.
Nature.
(2004);
428
821-827
R. Villar
Area de Ecología
Campus de Rabanales
Universidad de Córdoba, 14071
Spain
Email: bv1vimor@uco.es
Editor: J. Knops