Semin Liver Dis 2005; 25(1): 105-117
DOI: 10.1055/s-2005-864786
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Hepatitis C Virus Alternate Reading Frame (ARF) and Its Family of Novel Products: The Alternate Reading Frame Protein/F-Protein, the Double-Frameshift Protein, and Others

Andrea D. Branch1 , 2 , Decherd D. Stump2 , Julio A. Gutierrez2 , Francis Eng2 , José L. Walewski2
  • 1Associate Professor of Medicine, Mount Sinai School of Medicine, New York, New York
  • 2Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York
Further Information

Publication History

Publication Date:
25 February 2005 (online)

ABSTRACT

The hepatitis C virus (HCV) has an alternate reading frame (ARF) that overlaps the core protein gene. The overlapping reading frame distinguishes HCV from all of its known viral relatives, with the possible exception of GB virus B (GBV-B). The ARF is expressed during natural HCV infections and stimulates specific immune responses. Like several essential genes in other viruses (e.g., the human immunodeficiency virus polymerase) the ARF lacks an in-frame AUG start codon, suggesting that its expression involves unusual translation-level events. In vitro studies indicate that ribosomal frameshifting may be one of several processes that can lead to translation of the ARF. Frameshifting yields chimeric proteins that have segments encoded in the core gene covalently attached to amino acids encoded in the ARF. A consistent nomenclature for the ARF's protein products has yet to be established. We propose that all proteins that contain amino acids encoded in the + 1 ARF be called alternate reading frame proteins (ARFPs) and that specific ARFPs, such as the ARFP/F-protein, the double-frameshift protein, and the short form of core + 1, be designated as follows: ARFP/F (ARFP/F-protein), ARFP/DF (double-frameshift), and ARFP/S (short form of core + 1). The roles of ARFPs in the HCV life cycle are not yet known. There is a significant possibility that ARFPs may be responsible for some of the effects attributed to the core protein, given that most studies seeking to define the function of the core protein have employed materials likely to contain a combination of the core protein and ARFPs. The observed effects of the core protein include the induction of liver cancer, transformation of cells, and alterations of immune responses. This article reviews the discovery of ARF, describes the RNA structural elements involved in core/ARF gene expression, discusses possible functions of ARFPs, and considers the potential usefulness of ARFPs in vaccines. The HCV ARF is the focus of a new and rapidly expanding area of research, and the results of many ongoing studies are currently available in abstract form only. The preliminary nature of investigations that have not yet been reviewed by peers is noted in the text.

REFERENCES

  • 1 Choo Q L, Kuo G, Weiner A J, Overby L R, Bradley D W, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome.  Science. 1989;  244 359-362
  • 2 Bradley D W, Cook E H, Maynard J E et al.. Experimental infection of chimpanzees with antihemophilic (factor VIII) materials: recovery of virus-like particles associated with non-A, non-B hepatitis.  J Med Virol. 1979;  3 253-269
  • 3 Choo Q, Richman K H, Han J H et al.. Genetic organization and diversity of the hepatitis C virus.  Proc Natl Acad Sci USA. 1991;  88 2451-2455
  • 4 Lai M MC, Ware C F. Hepatitis C virus core protein: possible roles in viral pathogenesis.  Curr Top Microbiol Immunol. 2000;  242 117-134
  • 5 Ray R B, Lagging L M, Meyer K, Ray R. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype.  J Virol. 1996;  70 4438-4443
  • 6 Moriya K, Nakagawa K, Santa T et al.. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis.  Cancer Res. 2001;  61 4365-4370
  • 7 Lerat H, Honda M, Beard M R et al.. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus.  Gastroenterology. 2002;  122 352-365
  • 8 Hsieh T Y, Matsumoto M, Chou H C et al.. Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K.  J Biol Chem. 1998;  273 17651-17659
  • 9 Chang J, Yang S H, Cho Y G, Hwang S B, Hahn Y S, Sung Y C. Hepatitis C virus core from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H-ras oncogene.  J Virol. 1998;  72 3060-3065
  • 10 Jin D Y, Wang H L, Zhou Y et al.. Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation.  EMBO J. 2000;  19 729-740
  • 11 Tai D I, Tsai S L, Chen Y M et al.. Activation of nuclear factor kappaB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis.  Hepatology. 2000;  31 656-664
  • 12 Lee S, Park U, Lee Y I. Hepatitis C virus core protein transactivates insulin-like growth factor II gene transcription through acting concurrently on Egr1 and Sp1 sites.  Virology. 2001;  283 167-177
  • 13 Yoshida T, Hanada T, Tokuhisa T et al.. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation.  J Exp Med. 2002;  196 641-653
  • 14 McLauchlan J. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes.  J Viral Hepat. 2000;  7 2-14
  • 15 Basu A, Meyer K, Ray R B, Ray R. Hepatitis C virus core protein is necessary for the maintenance of immortalized human hepatocytes.  Virology. 2002;  298 53-62
  • 16 Delhem N, Sabile A, Gajardo R et al.. Activation of the interferon-inducible protein kinase PKR by hepatocellular carcinoma derived-hepatitis C virus core protein.  Oncogene. 2001;  20 5836-5845
  • 17 Soguero C, Joo M, Chianese-Bullock K A, Nguyen D T, Tung K, Hahn Y S. Hepatitis C virus core protein leads to immune suppression and liver damage in a transgenic murine model.  J Virol. 2002;  76 9345-9354
  • 18 Dolganiuc A, Oak S, Kodys K et al.. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation.  Gastroenterology. 2004;  127 1513-1524
  • 19 Aguilar J C, Acosta-Rivero N, Duenas-Carrera S et al.. HCV core protein modulates the immune response against the HBV surface antigen in mice.  Biochem Biophys Res Commun. 2003;  310 59-63
  • 20 Eisen-Vandervelde A L, Waggoner S N, Yao Z Q, Cale E M, Hahn C S, Hahn Y S. Hepatitis C virus core selectively suppresses interleukin-12 synthesis in human macrophages by interfering with AP-1 activation.  J Biol Chem. 2004;  279 43479-43486
  • 21 Erhardt A, Hassan M, Heintges T, Haussinger D. Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 tet-off cell line.  Virology. 2002;  292 272-284
  • 22 Brown E A, Zhang H, Ping L H, Lemon S M. Secondary structure of the 5′ nontranslated regions of hepatitis C virus and pestivirus genomic RNAs.  Nucleic Acids Res. 1992;  20 5041-5045
  • 23 Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A. Internal ribosome entry site within hepatitis C virus RNA.  J Virol. 1992;  66 1476-1483
  • 24 Wang C, Sarnow P, Siddiqui A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism.  J Virol. 1993;  67 3338-3344
  • 25 Spahn C M, Kieft J S, Grassucci R A et al.. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit.  Science. 2001;  291 1959-1962
  • 26 Kolykhalov A A, Feinstone S M, Rice C M. Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA.  J Virol. 1996;  70 3363-3371
  • 27 Kolykhalov A A, Mihalik K, Feinstone S M, Rice C M. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo.  J Virol. 2000;  74 2046-2051
  • 28 Walewski J L, Stump D D, Keller T R, Branch A D. HCV patients have antibodies against a novel protein encoded in a second reading frame.  Hepatology. 1998;  28 278A
  • 29 Walewski J L, Keller T R, Stump D D, Branch A D. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame.  RNA. 2001;  7 710-721
  • 30 Xu Z, Choi J, Yen T S et al.. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift.  EMBO J. 2001;  20 3840-3848
  • 31 Vassilaki N, Mavromara P. Two alternative translation mechanisms are responsible for the expression of the HCV ARFP/F/core + 1 coding open reading frame.  J Biol Chem. 2003;  278 40503-40513
  • 32 Boulant S, Becchi M, Penin F, Lavergne J P. Unusual multiple recoding events leading to alternative forms of hepatitis C virus core protein from genotype 1b.  J Biol Chem. 2003;  278 45785-45792
  • 33 Komurian-Pradel F, Rajoharison A, Berland J L et al.. Antigenic relevance of F protein in chronic hepatitis C virus infection.  Hepatology. 2004;  40 900-909
  • 34 Miladi A, Lavergne J, Hezode C, Dhumeaux D, Penin F, Pawlotsky J M. Prevalence of anti-HCV F (frameshift) protein antibodies in patients with various forms of HCV infection and the putative physiological role of F protein. Paper presented at: 11th International Symposium on Hepatitis C Virus and Related Viruses abstract P-257 October 3-7, 2004 in Heidelberg, Germany;
  • 35 Bain C, Parroche P, Lavergne J P et al.. Memory T-cell-mediated immune responses specific to an alternative core protein in hepatitis C virus infection.  J Virol. 2004;  78 10460-10469
  • 36 Ina Y, Mizokami M, Ohba K, Gojobori T. Reduction of synonymous substitutions in the core protein gene of hepatitis C virus.  J Mol Evol. 1994;  38 50-56
  • 37 Smith D B, Simmonds P. Characteristics of nucleotide substitutions in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome.  J Mol Evol. 1997;  45 238-246
  • 38 Walewski J L, Gutierrez J A, Branch-Elliman W et al.. Mutation master: profiles of substitutions in hepatitis C virus RNA of the core, alternate reading frame, and NS2 coding regions.  RNA. 2002;  8 557-571
  • 39 James B D, Olsen G J, Pace N R. Phylogenetic comparative sequence analysis of RNA secondary structure.  Methods Enzymol. 1989;  180 227-239
  • 40 James B D, Olsen G J, Pace N R. Phylogenic comparative analysis of RNA secondary structure.  Methods Enzymol. 1989;  180 227-239
  • 41 Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.  Nucleic Acids Res. 1981;  9 133-148
  • 42 You S Y, Stump D D, Branch A D, Rice C M. A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication.  J Virol. 2004;  78 1352-1366
  • 43 Lee H, Shin H, Wimmer E, Paul A V. cis-Acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome.  J Virol. 2004;  78 10865-10877
  • 44 Friebe P, Boudet J, Dimorre J P, Bartenschlager R. A kissing loop interaction between a novel cis acting RNA element in the NS5b coding region and the 3′ non-translated region is required for hepatitis C virus RNA replication. Paper presented at: 11th International Symposium on Hepatitis C Virus and Related Viruses abstract 0-17 October 3-7, 2004 in Heidelberg, Germany;
  • 45 Gesteland R F, Weiss R B, Atkins J F. Recoding: reprogrammed genetic decoding.  Science. 1992;  257 1640-1641
  • 46 Matsufuji S, Matsufuji T, Miyazaki Y et al.. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme.  Cell. 1995;  80 51-60
  • 47 Ivanov I P, Gesteland R F, Atkins J F. A second mammalian antizyme: conservation of programmed ribosomal frameshifting.  Genomics. 1998;  52 119-129
  • 48 Weiss R B, Dunn D M, Dahlberg A E, Atkins J F, Gesteland R F. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli .  EMBO J. 1988;  7 1503-1507
  • 49 Dulude D, Baril M, Brakier-Gingras L. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.  Nucleic Acids Res. 2002;  30 5094-5102
  • 50 Varaklioti A, Vassilaki N, Georgopoulou U, Mavromara P. Alternate translation occurs within the core coding region of the hepatitis C viral genome.  J Biol Chem. 2002;  277 17713-17721
  • 51 Gosert R, Moradpour D. Reading between the lines: evidence for a new hepatitis C virus protein.  Hepatology. 2002;  36 757-760
  • 52 Choi J, Xu Z, Ou Jh. Triple decoding of hepatitis C virus RNA by programmed translational frameshifting.  Mol Cell Biol. 2003;  23 1489-1497
  • 53 Roussel J, Pillez A, Montpellier C et al.. Characterization of the expression of the hepatitis C virus F protein.  J Gen Virol. 2003;  84 1751-1759
  • 54 Basu A, Meyer K, Ray R B, Ray R. Hepatitis C virus core protein is necessary for the maintenance of immortalized human hepatocytes.  Virology. 2002;  298 53-62
  • 55 Lo S Y, Masiarz F, Hwang S B, Lai M M, Ou J H. Differential subcellular localization of hepatitis C virus core gene products.  Virology. 1995;  213 455-461
  • 56 Lo S Y, Selby M, Tong M, Ou J H. Comparative studies of the core gene products of two different hepatitis C virus isolates: two alternative forms determined by a single amino acid substitution.  Virology. 1994;  199 124-131
  • 57 Xu Z, Choi J, Lu W, Ou J H. Hepatitis C virus F protein is a short-lived protein associated with the endoplasmic reticulum.  J Virol. 2003;  77 1578-1583
  • 58 Wolf M, Dimitrova M, Kien F, Schuster C. Translocation of the hepatitis C virus F protein sequence: influence of the RNA context and of the presence of HCV proteins. Paper presented at: 11th International Symposium on Hepatitis C Virus and Related Viruses abstract P-84 October 3-7, 2004 in Heidelberg, Germany;
  • 59 Vassilaki N, Mavromara P. Expression studies on the short form of the HCV ARFP/F/core + 1 protein in mammalian cells. Paper presented at: 11th International Symposium on Hepatitis C Virus and Related Viruses abstract 0-25 October 3-7, 2004 in Heidelberg, Germany;
  • 60 Ganem D. Virology. The X files-one step closer to closure.  Science. 2001;  294 2299-2300
  • 61 Lohmann V, Korner F, Koch J O, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line.  Science. 1999;  285 110-113
  • 62 Blight K J, Kolykhalov A A, Rice C M. Efficient initiation of HCV RNA replication in cell culture.  Science. 2000;  290 1972-1974
  • 63 McMulllan L K, Grakoui A, Puig M et al.. Multiple stop codons in the HCV ARF suggest that expression of F/ARFP is not essential for virus replication but reveal a functional RNA element. Paper presented at: 11th International Symposium on Hepatitis C Virus and Related Viruses abstract 0-20 October 3-7, 2004 in Heidelberg, Germany;
  • 64 Bukh J, Miller R H, Purcell R H. Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes.  Semin Liver Dis. 1995;  15 41-63
  • 65 Shimizu I, Yao D-F, Horie C et al.. Mutations in a hydrophilic part of the core gene of hepatitis C virus in patients with hepatocellular carcinoma in China.  J Gastroenterol. 1997;  32 47-55
  • 66 Takahashi K, Iwata K, Matsumoto M et al.. Hepatitis C virus (HCV) genotype 1b sequences from fifteen patients with hepatocellular carcinoma: the ‘progression score’ revisited.  Hepatol Res. 2001;  20 161-171
  • 67 Hayashi J, Furusyo N, Ariyama I, Sawayama Y, Etoh Y, Kashiwagi S. A relationship between the evolution of hepatitis C virus variants, liver damage, and hepatocellular carcinoma in patients with hepatitis C viremia.  J Infect Dis. 2000;  181 1523-1527
  • 68 Ruster B, Zeuzem S, Krump-Konvalinkova V et al.. Comparative sequence analysis of the core- and NS5-region of hepatitis C virus from tumor and adjacent non-tumor tissue.  J Med Virol. 2001;  63 128-134
  • 69 Alam S S, Nakamura T, Naganuma A et al.. Hepatitis C virus quasispecies in cancerous and noncancerous hepatic lesions: the core protein-encoding region.  Acta Med Okayama. 2002;  56 141-147
  • 70 Ogata S, Nagano-Fujii M, Ku Y, Yoon S, Hotta H. Comparative sequence analysis of the core protein and its frameshift product, the F protein, of hepatitis C virus subtype 1b strains obtained from patients with and without hepatocellular carcinoma.  J Clin Microbiol. 2002;  40 3625-3630
  • 71 Yeh C T, Lo S Y, Dai D I, Tang J H, Chu C M, Liaw Y F. Amino acid substitutions in codons 9-11 of hepatitis C virus core protein lead to the synthesis of a short core protein product.  J Gastroenterol Hepatol. 2000;  15 182-191
  • 72 Rullier A, Trimoulet P, Urbaniak R et al.. Immunohistochemical detection of HCV in cirrhosis, dysplastic nodules, and hepatocellular carcinomas with parallel-tissue quantitative RT-PCR.  Mod Pathol. 2001;  14 496-505
  • 73 Branch A D, Walewski J L, Gutierrez J A et al.. HCV alternate reading frame proteins (ARFPs) may be virulence factors that help the virus survive adverse conditions.  Hepatology. 2003;  38 468A-469A
  • 74 Honda M, Kaneko S, Matsushita E, Kobayashi K, Abell G A, Lemon S M. Cell cycle regulation of hepatitis C virus internal ribosomal entry site-directed translation.  Gastroenterology. 2000;  118 152-162
  • 75 Pietschmann T, Lohmann V, Rutter G, Kurpanek K, Bartenschlager R. Characterization of cell lines carrying self-replicating hepatitis C virus RNAs.  J Virol. 2001;  75 1252-1264
  • 76 Basu A, Steele R, Ray R, Ray R B. Functional properties of a 16 kDa protein translated from an alternative open reading frame of the core-encoding genomic region of hepatitis C virus.  J Gen Virol. 2004;  85 2299-2306
  • 77 Griffin S V, Shankland S J. Not just an inhibitor: a role for p21 beyond the cell cycle-The truth is rarely pure and never simple.  J Am Soc Nephrol. 2004;  15 825-826
  • 78 Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?.  Trends Cell Biol. 2003;  13 65-70
  • 79 Shou J, Soriano R, Hayward S W, Cunha G R, Williams P M, Gao W Q. Expression profiling of a human cell line model of prostatic cancer reveals a direct involvement of interferon signaling in prostate tumor progression.  Proc Natl Acad Sci USA. 2002;  99 2830-2835
  • 80 Kulaeva O I, Draghici S, Tang L, Kraniak J M, Land S J, Tainsky M A. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization.  Oncogene. 2003;  22 4118-4127
  • 81 Zhang X, Chatel L, Fournillier A et al.. Vaccine induced immune responses specific of the Alternate Reading Frame Protein (ARFP) of HCV. Paper presented at: 11th International Symposium on Hepatitis C Virus and Related Viruses abstract 0-68 October 3-7, 2004 in Heidelberg, Germany;
  • 82 Malarkannan S, Horng T, Shih P P, Schwab S, Shastri C. Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism.  Immunity. 1999;  10 681-690
  • 83 Cardinaud S, Moris A, Fevrier M et al.. Identification of cryptic MCHI-restricted epitopes encoded by HIV-1 alternate reading frames.  J Exp Med. 2004;  199 1053-1063
  • 84 André P, Perlemuter G, Budkowska A, Bréchot C, Lotteau V. Hepatitis C virus particles and lipoprotein metabolism.  Semin Liver Dis. 2005;  25 93-104
  • 85 Tillmann H L, Manns M P, Rudolph K L. Merging models of hepatitis C virus pathogenesis.  Semin Liver Dis. 2005;  25 84-92
  • 86 Heller T, Rehermann B. Acute hepatitis C: A multifaceted disease.  Semin Liver Dis. 2005;  25 7-17
  • 87 Morgello S. The nervous system and hepatitis C virus.  Semin Liver Dis. 2005;  25 118-121

Andrea D BranchM.D. 

Division of Liver Diseases, Mount Sinai School of Medicine

New York, NY 10029

Email: andrea.branch@mssm.edu

    >