Zusammenfassung
Basierend auf bioelektrochemischer Apoptose oder photodynamischer Nekrose von
Krebszellen in vitro [[2]] wird nun der heutige Stand von Tumorregressionen bei Tieren und Patienten mittels
Photodynamie, Gleichstromelektrolyse, Elektropuls und magnetischer-elektromagnetischer
Felder referiert.
Hiermit werden folgende letale Effekte wirksam: Photooxidation von Nukleinsäuren,
Verminderung der Mitoserate, elektrolytische Zerstörung der Zellstruktur, Porierung
der Zellmembran für beschleunigtes Eindiffundieren von Zytostatika, Apoptose-Induktion
und Nekrose, Expressionshemmung des immunoreaktiven p53-Proteins. Unterstützend
wirken Kombinationen mit Hyperthermie und Hyperglykämie (pH-Erniedrigung zwecks
Membranlabilisierung).
Nachdem auf zellulärer Ebene alle diese Varianten bereits getestet worden sind,
haben die meisten davon auch bei Tierversuchen zum Erfolg geführt, während Einsätze
bei Patienten bisher nur auf die invasiven Methoden wie Photodynamie, Gleichstromelektrolyse
und Elektropuls beschränkt waren. Demgegenüber haben Magnetfelder B > 5 mT
wesentliche Vorteile (schmerzfreie Tiefenwirkung), jedoch bedarf es in Deutschland
noch mehr Initiative, um optimale Amplituden- und Frequenzfenster zu ermitteln.
Abstract
Based on bioelectrochemical apoptosis or photodynamical necrosis of cancer cells
in vitro [[2]] „the state of art” of regression of tumors in animals and patients by photodynamics,
direct current-electrolysis, electro pulse and magnetic-electromagnetic fields
will be reviewed.
During treatments by them the following effects occur: photo oxidation of nucleic
acids, inhibition of mitosis, electrolytic degradation of cell structure, poration
of cell membrane causing accelerated penetration of cytostatic drugs, induction
of apoptosis and necrosis, inhibition of expression of the immunoreactive p53
protein. These processes are supported by combinations with hyperthermia and hyperglycemia
(decrease of pH-value and hence labilization of membrane structure).
After testing all these variants on the cellular level in vitro most of them have
been applied for treatments of tumors of animals. But the curing of patients has
been restricted up to now to the application of invasive photodynamics, direct-current
electrolysis and electro pulse. In contrast to these strong agents the soft, non-invasive
magnetic fields B > 5 mT would have essential advantages (painfree deep-effects).
However, it needs more initiative in Germany to determine for these methods the
optimal „windows” of amplitude and frequency.
Schlüsselwörter
Photodynamie - Gleichstromelektrolyse - Elektropuls - pulsierende elektromagnetische
Felder - PEMF - Hyperthermie - Krebszellen - Tiertumoren - Krebspatienten
Keywords
Photodynamics - direct-current electrolysis - electro pulse - PEMF - hyperthermia
- cancer cells - tumors of animals - cancer-patients
Literatur
- 01 Ardenne M v. Systemische Krebsmehrschritt-Therapie (Hyperthermie und Hyperglykämie
als Therapiebasis). Stuttgart; Hippokrates 1997
- 02
Berg H.
Synergistische Steigerung des photodynamischen Effektes bei Krebszellen durch
elektromagnetische Feldstimulation.
EHK.
2003;
2
84-9
- 03 Berg H, Bauer E, Gollmick F, Dietzel W, Meffert H, Sönnichsen N. Photodynamic hematoporphyrin
therapy of psoriasis. In: Jori G, Perria C (Eds.): Photodynamic Therapy of Tumors
and other Diseases. Padova; Libreria Progretto 1985: 338-43
- 04
Berg H, Jungstand W.
Photodynamische Wirkung auf das solide Ehrlich-Karzinom.
Naturwiss.
1966;
53
481
- 05 Binhi V. Magnetobiology - underlying physical problems. San Diego; Academic Press
2002
- 06
Dougherty T.
Photodynamic Therapy.
Clin Chest Med.
1985;
6
219-36
- 07
Elez R, Piiper A, Kronenberger B, Kock M, Brendel M, Hermann E, Pliquett U, Neumann E,
Zeuzem S.
Tumor regression by combination antisens therapy against PLK-1 and BCL-2.
Oncogene.
2003;
22
69-80
- 08
Gorgun S.
Studies in interaction between electromagnetic fields and living matter neoplastic
cellular culture.
Frontier Perspectives.
1998;
7
1-21
- 09
Hannan C, Liang Y, Allison J, Pantazis C, Searle J.
Chemotherapy of human carcinoma xenografts during pulsed magnetic field exposure.
Anticancer Res..
1994;
14
1521-2
- 10 Jori G, Perria C, (Eds.). Photodynamic Therapy of Tumors and other Diseases. Padova;
Libreria Progretto 1985
- 11
Kuzelova K, Grebenova D, Pluskalova M, Marinow I, Hrkal Z.
Early apoptotic features of K562 cell death induced by 5-aminolävulinic acid-based
photodynamic therapy.
J Photochem Photobiol B.
2004;
73
67-78
- 12
Labanauskien J, Tamosinas M, Bagdonas S, Didziapetrien J, Rotomkis R.
Application of electropermialization during experimental photosensitized Tumor
therapy.
Acta Medica Litunica.
2002;
9
69-71
- 13
Lambreva M, Glück B, Radeva M, Berg H.
Electroporation of cell membranes supporting penetration of photodynamic active
macromolecular chromophor dextrans.
Bioelectrochemistry.
2004;
62
95-8
- 14 Markov M, Williams C, Cameron I, Hardman W, Salvatore I. Can magnetic field inhibit
angiogenesis and tumor growth?. In: Rosch P, Markov M (Eds.): Bioelectromagnetic
Medicine. NY; Marcel Dekker 2004: 625-36
- 15 Moser J. Photodynamic Tumor Therapy, 2nd and 3rd Generation of Photosensitizers. Amsterdam;
Harwood Acad. Publ. 1998
- 16
Nordenström B.
Electrochemical treatment of cancer, I. Variable response to anodic and cathodic
fields.
Am J Clin Oncol.
1998;
12
530-6
- 17
Omote Y, Hosokawa M, Komatsomoto M, Namieno T, Nakajima S, Kubo Y, Kobyashi H.
Treatment of experimental tumors with combination of pulsing magnetic field
and an antitumor drug.
Japan J Cancer Res.
1990;
81
956-61
- 18 Pallares D, Rosch P. Magneto-metabolic therapy for advanced malignancy and
cardiomyopathy. In: Rosch P, Markov M (Eds.): Bioelectromagnetic Medicine. NY;
Marcel Dekker 2004: 593-612
- 19
Pang L, Baciu C, Traitcheva N, Berg H.
Photodynamic effect on cancer cells influenced by electromagnetic fields.
J photochem Photobiol.
2001;
64
21-6
- 20 Rabussay D, Widera G, Burian M. Electroporation therapy: treatment of cancer and
other therapeutic applications. In: Rosch P, Markov M (Eds.): Bioelectromagnetic
Medicine. NY; Marcel Dekker 2004: 657-96
- 21
Radeva M, Berg H.
Differences in lethality between cancer cells and human lymphocites caused by
electromagnetic fields.
Bioelectromagnetics.
2004;
25
503-7
- 22
Ronchetto F, Barone D, Cintorino M, Berardelli M, Lissolo S, Orlassino R, Ossola P,
Tofani S.
Extremely low frequency modulated static magnetic fields to treat cancer: a
pilot study on patients with advanced neoplasms to assess safety and acute toxicity.
Bioelectromagnetics.
2004;
25
563-76
- 23
Salvatore I, Harrington J, Kummet J.
Phase I clinical study of a static magnetic field combined with anti-neoplastic
chemotherapy in the treatment of human malignancy: initial safety and toxicity
data.
Bioelectromagnetics.
2003;
24
524-7
- 24
de Seze R, Tuffe S, Moreau J, Veyret B.
Effects of 100 mT time varying magnetic fields on the growth of tumors in mice.
Bioelectromagnetics.
2000;
21
107-11
- 25
Tofani S, Cintotio M, Barone D, Berardelli M, De Santi M, Ferrara A, Orlassino R,
Ossola P, Rolfo K, Ronchetto F, Tripodi S, Tosi P.
Increased mouse survival, tumor growth inhibition and decreased immunoreactive
p53 after exposure to magnetic fields.
Bioelectromagnetics.
2002;
23
230-8
- 26
Traitcheva N, Angelova P, Radeva M, Berg H.
ELF-fields and photooxidation yielding lethal effects on cancer cells.
Bioelectromagnetics.
2003;
24
148-50
- 27 Weber H, Berg H. Electrofusion of yeast protoplasts. In: Nikoloff J (Ed.): Electroporation
and electrofusion of microorganisms. Totowa; Humana Press 1995
- 28
Williams C, Markov M.
Therapeutic electromagnetic field effects on angiogenesis during tumor growth:
a pilot study in mice.
Electro-Magnetobiology.
2001;
20
323-9
- 29 Xin Y, Zao H, Zhang W, Liang C, Wang Z, Liu G. Electrochemical therapy of tumors. In:
Rosch P, Markov M (Eds.): Bioelectromagnetic Medicine. NY; Marcel Dekker 2004:
709-26
- 30
Zhang L, Widera G, Bleecher S, Zaharoff D, Mossop B, Rabussay D.
Accellerated immune response to DNA vaccines. DNA and Cell Biology.
Oncogene.
2003;
22
815-22
- 31
Radeva M, Lambreva M, Angelova P, Traitcheva N, Berg H.
Synergism of electromagnetic fields and photodynamic effects induce apoptosis
and necrosis of cancer cells.
Electrochemistry (China).
2004;
10
260-70
Korrespondenzadresse
Prof. Hermann Berg
Laboratorium Bioelektrochemie (Campus Beutenberg, Jena) der Sächsischen Akademie
der Wissenschaften zu Leipzig
Greifberg 15
07749 Jena
Email: hbergjena@hotmail.com