Synlett 2005(3): 501-505  
DOI: 10.1055/s-2005-862356
LETTER
© Georg Thieme Verlag Stuttgart · New York

Tandem Catalysis: A Ring-Closing Metathesis Followed by Dehydrogenative Oxidation to Afford Substituted Indenones

Willem A. L. van Otterlo*, E. Mabel Coyanis, Jenny-Lee Panayides, Charles B. de Koning, Manuel A. Fernandes
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, Johannesburg, South Africa
Fax: +27(11)7176749; e-Mail: willem@aurum.chem.wits.ac.za;
Further Information

Publication History

Received 29 October 2004
Publication Date:
04 February 2005 (online)

Abstract

Grubbs second generation catalyst converts substituted 1-(2-propenylphenyl)prop-2-en-1-ols into substituted indenols or indenones depending on the reaction conditions employed. The formation of indenones represents the first example of a tandem ruthenium-mediated ring-closing metathesis-dehydrogenative oxidation reaction.

    References

  • 1a Deiters A. Martin SF. Chem. Rev.  2004,  104:  2199 
  • 1b McReynolds MD. Dougherty JM. Hanson PR. Chem. Rev.  2004,  104:  2239 , and reviews cited therein
  • 2 Alcaide B. Almendros P. Chem.-Eur. J.  2003,  9:  1259 
  • 3 Schmidt B. Eur. J. Org. Chem.  2004,  1865 
  • 4a Fürstner A. Thiel OR. Ackermann L. Schanz H.-J. Nolan SP. J. Org. Chem.  2000,  65:  2204 
  • 4b Kinderman SS. Doodeman R. van Beijma JW. Russcher JC. Tjen KCMF. Kooistra TM. Mohaselzadeh H. van Maarseveen JH. Hiemstra H. Schoemaker HE. Rutjes FPJT. Adv. Synth. Catal.  2002,  344:  736 
  • 4c Sutton AE. Seigal BA. Finnegan DF. Snapper ML. J. Am. Chem. Soc.  2002,  124:  13390 
  • 4d De Clercq B. Verpoort F. J. Organomet. Chem.  2003,  672:  11 
  • 4e Louie J. Bielawski CW. Grubbs RH. J. Am. Chem. Soc.  2001,  123:  11312 
  • 4f Schmidt B. Pohler M. Org. Biomol. Chem.  2003,  1:  2512 
  • 4g van Otterlo WAL. Ngidi EL. Coyanis EM. de Koning CB. Tetrahedron Lett.  2003,  44:  311 
  • 4h Fogg DE. Amoroso D. Drouin SD. Snelgrove J. Conrad J. Zamanian F. J. Mol. Catal. A: Chem.  2002,  190:  177 
  • 4i Moreno-Mañas M. Pleixats R. Santamaria A. Synlett  2001,  1784 
  • 4j Schmidt B. Chem. Commun.  2004,  742 
  • 4k Rosillo M. Casarrubios L. Domínguez G. Pérez-Castells J. Org. Biomol. Chem.  2003,  1:  1450 
  • 5a van Otterlo WAL. Ngidi EL. de Koning CB. Tetrahedron Lett.  2003,  44:  6483 
  • 5b van Otterlo WAL. Pathak R. de Koning CB. Synlett  2003,  1859 
  • 5c van Otterlo WAL. Ngidi EL. de Koning CB. Fernandes MA. Tetrahedron Lett.  2004,  45:  659 
  • 6a Coombs MM. Benzocyclopropene, Benzocyclobutene and Indene, and their Derivatives, In Rodd’s Chemistry of Carbon Compounds   2nd ed., 2nd Suppl., Vol. IIIF(partial)/IIIG/IIIH:  Sainsbury M. Elsevier; Amsterdam: 1995. 
  • 6b Ivchenko NB. Ivchenko PV. Nifant’ev IE. Russ. J. Org. Chem.  2000,  36:  609 
  • 7 Ishiguru Y. Okamoto K. Ojima F. Sonoda Y. Chem. Lett.  1993,  1139 
  • 8 Sengupta P. Sen M. Niyogi SK. Pakrashi SC. Ali E. Phytochemistry  1976,  15:  995 
  • 9 Harrowven DC. Newman NA. Knight CA. Tetrahedron Lett.  1998,  39:  6757 
  • 10a Chang K.-J. Rayabarapu DK. Cheng C.-H. J. Org. Chem.  2004,  69:  4781 
  • 10b Quan LG. Gevorgyan V. Yamamoto Y. J. Am. Chem. Soc.  1999,  121:  3545 
  • 10c Gevorgyan V. Quan LG. Yamamoto Y. Tetrahedron Lett.  1999,  40:  4089 
  • 10d Vicente J. Abad J.-A. Gil-Rubio J. Organometallics  1996,  15:  3509 
  • 11a Pletnev AA. Tian Q. Larock RC. J. Org. Chem.  2002,  67:  9276 
  • 11b Padwa A. Molecules  2001,  6:  1 
  • 11c Fukuyama T. Chatani N. Kakiuchi F. Murai S. J. Org. Chem.  1997,  62:  5647 
  • 12 For a recently reported route to an indenol using a RCM approach see: Clive DLJ. Yu M. Sannigrahi M. J. Org. Chem.  2004,  69:  4116 
  • 14 de Koning CB. Michael JP. Rousseau AL. J. Chem. Soc., Perkin Trans. 1  2000,  787 
  • 15 Krompiec S. KuŸnik N. Penczek R. Rzepa J. Mrowiec-Bialoñ J. J. Mol. Catal. A: Chem.  2004,  219:  29 ; and citations therein
  • 16a Huang K.-S. Wang E.-C. Tetrahedron Lett.  2001,  42:  6155 
  • 16b de Koning CB. Giles RGF. Green IR. Jahed NM. Tetrahedron  2003,  59:  3175 
  • 22 Storage of the indenols (as oils) without the exclusion of air resulted in a slow conversion into indenones (ca. 5% over six months)
  • A literature search also revealed that mild oxidants such a MnO2,23a chromium(III)(salen) with PhI(OAc)2 23b or PhIO23c have been successfully used to accomplish the indenol to indenone transformation. See
  • 23a Wu Y. Ahlberg P. Acta Chem. Scand.  1995,  49:  364 
  • 23b Adam W. Hajra S. Herderich M. Saha-Möller CR. Org. Lett.  2000,  2:  2773 
  • 23c Adam W. Gadissa Gelalcha F. Saha-Möller CR. Stegmann VR. J. Org. Chem.  2000,  65:  1915 
  • 24a Cho JH. Kim BM. Org. Lett.  2003,  5:  531 
  • 24b Mi Ahn Y. Yang K. Georg GI. Org. Lett.  2001,  3:  1411 
  • 25a Westhus M. Gonthier E. Brohm D. Breinbauer R. Tetrahedron Lett.  2004,  45:  3141 
  • 25b Gonthier E. Breinbauer R. Synlett  2003,  1049 
  • When a NMR spectroscopically monitored experiment (d 8-toluene) was conducted on 5a (with catalyst 1) at 105 °C, evidence suggested that a ruthenium-promoted redox isomerization was occurring to form the corresponding indanone 8. See the following references describing this type of transformation mediated by ruthenium metathesis catalysts:
  • 26a Greenwood ES. Parsons PJ. Young MJ. Synth. Commun.  2003,  33:  223 
  • 26b Gurjar MK. Yakambram P. Tetrahedron Lett.  2001,  42:  3633 
  • 26c Trost BM. Kulawiec RJ. J. Am. Chem. Soc.  1993,  115:  2027 . Repeating the experiment in a conventional manner on substrate 5a [toluene, catalyst 1 (5%), r.t., 24 h, then ca. 100 °C, 18 h] gave the indanone 8 in an unoptimized yield of 51%; its structure was confirmed by various spectroscopic techniques. To the best of our knowledge this constitutes the first report of a tandem RCM-redox isomerization reaction and we will be investigating reactions of this type in more detail. 4-Isopropoxy-5-methoxyindan-1-one (8): 1H NMR (200 MHz, CDCl3): δ = 7.48 (d, 1 H, J = 8.3 Hz, 7-H), 6.95 (d, 1 H, J = 8.3 Hz, 6-H), 4.51 [sept, 1 H, J = 6.1 Hz, CH(CH3)2], 3.90 (s, 3 H, OCH3), 3.08-3.02 (m, 2 H, 2-H), 2.66-2.60 (m, 2 H, 3-H), 1.29 [d, 6 H, J = 6.1 Hz, CH(CH 3)2]. 13C NMR (50 MHz, CDCl3): δ = 205.6 (C=O), 157.6 (C), 149.0 (C), 143.4 (C), 131.0 (C), 119.7 (CH), 112.1 (CH), 74.6 (OCH), 56.1 (OCH3), 36.4 (C-2), 22.9 (C-3), 22.7 (CH3). IR: 1708, 1598 cm-1. HRMS (CI): m/z calcd for C13H16O3: 220.10995; found: 220.10989. MS: m/z (%) = 220 (33) [M + ], 178 (100), 163 (8), 150 (6), 149 (6), 135 (15), 107 (10)
  • 27a Meijer RH. Ligthart GBWL. Meuldijk J. Vekemans JAJM. Hulshof LA. Mills AM. Kooijman H. Spek AL. Tetrahedron  2004,  60:  1065 
  • 27b Ligthart GBWL. Meijer RH. Donners MPJ. Meuldijk J. Vekemans JAJM. Hulshof LA. Tetrahedron Lett.  2003,  44:  1507 
  • 27c Choi JH. Kim N. Shin YJ. Park JH. Park J. Tetrahedron Lett.  2004,  45:  4607 
13

Work taken from the post-doctoral research project of Dr. E. M. Coyanis and the ongoing MSc project of Ms J.-L. Panayides.

17

Typical Experimental Procedure for Forming Indenols:
Grubbs catalyst 1 (5 mol%) was added to a degassed solution (N2) of 5a (262 mg, 0.62 mmol) in CH2Cl2 (25 mL). The solution was then stirred under N2 at r.t. for 3 h. After evaporation of the solvent and column chromatographic purification of the residue (5-10% EtOAc-hexane), 4-isopropoxy-5-methoxy-1H-inden-1-ol (6a) was obtained as a pale yellow oil (191 mg, 87%). 1H NMR (200 MHz, CDCl3, assignments with the same superscript may be interchanged): δ = 7.12 (d, 1 H, J = 7.9 Hz, 7-H), 6.73 (d, 1 H, J = 5.6 Hz, 3-H), 6.66 (d, 1 H, J = 7.9 Hz, 2-H), 6.27 (dd, 1 H, J = 5.6 and 2.0 Hz, 6-H), 5.04 (br s, 1 H, 1-H), 4.33 [br sept, 1 H, J = 6.2 Hz, CH(CH3)2], 3.80 (s, 3 H, OCH3), 2.08 (br s, 1 H, OH), 1.28 [d, 3 H, J = 6.4 Hz, CH(CH 3)CH3], 1.25 [d, 3 H, J = 6.5 Hz, CH(CH3)CH 3]. 13C NMR (50 MHz, CDCl3): δ = 153.3 (C), 140.1 (C), 138.4 (C), 137.8 (CH), 136.7 (C), 129.2 (CH), 118.9 (CH), 109.4 (CH), 77.1 (OCH), 75.6 (C-O), 55.9 (OCH3), 22.5 (CH3), 22.4 (CH3).
IR: 3400(br), 1674, 1617, 1596, 1556 cm-1. HRMS (CI): m/z calcd for C13H16O3: 220.10995; found: 220.10990. MS: m/z (%) = 220 (69) [M + ], 179 (18), 178 (100), 177 (28), 176 (16), 163 (41), 161 (12), 149 (16), 147 (18), 146 (18), 135 (10), 118 (10), 77 (10), 69 (11), 57 (14), 55 (12), 43 (28), 41 (19).

18

All new compounds were identified using routine spectroscopy and gave satisfactory data.

19

In an attempt to improve the yields of indenols 6d and 6e we protected the alcohol functionalities of 5d and 5e with acetyl groups. However, much to our surprise, the RCM reactions of these substrates, at r.t. or at 110 °C, did not proceed to afford the acetyl-protected cyclic products and only starting material was recovered.

20

Typical Experimental Procedure for Forming Indenones:
Grubbs catalyst 1 (8 mol%) was added to a degassed solution (N2) of 5a (141 mg, 0.54 mmol) in toluene (10 mL). The solution was then heated at 80 °C under N2 for 2 h. Evaporation of the solvent and column chromatographic purification of the residue (20% EtOAc-hexane) then afforded 4-isopropoxy-5-methoxyinden-1-one (7a) as a yellow semi-solid (72 mg, 62%). 1H NMR (200 MHz, CDCl3): δ = 7.64 (d, 1 H, J = 5.8 Hz, H-3), 7.38 (d, 1 H, J = 7.8 Hz, H-7), 6.60 (d, 1 H, J = 7.8 Hz, H-6), 5.86 (d, 1 H, J = 5.8 Hz, H-2), 4.40 [sept, 1 H, J = 6.1 Hz, CH(CH3)2], 3.87 (s, 3 H, OCH3), 1.31 [d, 6 H, J = 6.1 Hz, CH(CH 3)2]. 13C NMR (50 MHz, CDCl3): δ = 197.2 (C=O), 158.8 (C), 145.5 (CH), 142.0 (C), 137.5 (C), 127.9 (CH), 123.9 (C), 119.7 (CH), 109.8 (CH), 75.9 (OCH), 56.1 (OCH3), 22.4 (CH3). IR: 1708, 1604 cm-1. HRMS (CI): m/z calcd for C13H14O3: 218.09430; found: 218.09433. MS: m/z (%) = 218 (29) [M + ], 193 (21), 178 (20), 177 (40), 176 (100), 175 (25), 163 (17), 161 (23), 149 (37), 147 (20), 105 (21), 91 (17), 77 (26), 73 (23), 69 (22), 57 (33), 55 (26), 43 (49), 41 (46).

21

X-ray crystal structure of 4-isopropoxy-5-methoxy-2-methyl-3-phenylinden-1-one (7f): crystallized from CHCl3, formula: C20H20O3, M = 308.36, color of crystal: yellow, prism, crystal size 0.31 × 0.20 × 0.02 mm, a = 6.3298 (11) Å, b = 18.133 (3) Å, c = 7.7645 (13) Å, β = 110.094 (3)°, V = 836.9 (2) Å3, ρcalc = 1.224 Mg/m3, µ = 0.081 mm-1, F(000) = 328, Z = 2, monoclinic, space group P21, T = 293 K, 5132 reflections collected, 2444 independent reflections, θmax = 26.50°, 212 refined parameters, maximum residual electron density 0.129 and -0.161 e·Å-3. R1 = 0.0421, wR2 = 0.0813. Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre as deposition No. CCDC-250072.