Zusammenfassung
Im vorliegenden Artikel werden die gebräuchlichsten Methoden der funktionellen MR-Bildgebung
dargestellt. Der Schwerpunkt liegt dabei auf der Abbildung funktioneller Prozesse
und deren Pathologie im Zentralnervensystem. Es werden die physikalisch-physiologischen
Grundlagen kontrastmittelverstärkter und kontrastmittelfreier Verfahren dargestellt
und es wird ihr Potenzial bezüglich einer klinischen Anwendung anhand ausgewählter
Fälle diskutiert. Im Bereich der kontrastmittelverstärkten MR-Techniken wird insbesondere
auf die T1- und T2*-dynamische MRT eingegangen. Ausgehend von verschiedenen pharmakokinetischen
Modellen der Kontrastmittelanreicherung werden diagnostische Ansätze für die Neurologie
und Strahlentherapie diskutiert. Die kontrastmittelfreien Verfahren werden am Beispiel
der Blood Oxygenation Level Dependent (BOLD)-fMRT und des Arterial Spin Labelings
(ASL) dargestellt und ihre diagnostische Relevanz wird an verschiedenen klinischen
Beispielen aus der Psychiatrie und Neurochirurgie erläutert. Abschließend wird ein
vergleichender Ausblick bezüglich der zu erwartenden Entwicklungen auf dem Gebiet
der funktionellen MRT gegeben.
Abstract
This review presents the basic principles of functional imaging of the central nervous
system utilizing magnetic resonance imaging. The focus is set on visualization of
different functional aspects of the brain and related pathologies. Additionally, clinical
cases are presented to illustrate the applications of functional imaging techniques
in the clinical setting. The relevant physics and physiology of contrast-enhanced
and non-contrast-enhanced methods are discussed. The two main functional MR techniques
requiring contrast-enhancement are dynamic T1- and T2*-MRI to image perfusion. Based
on different pharmacokinetic models of contrast enhancement diagnostic applications
for neurology and radio-oncology are discussed. The functional non-contrast enhanced
imaging techniques are based on “blood oxygenation level dependent (BOLD)-fMRI and
arterial spin labeling (ASL) technique. They have gained clinical impact particularly
in the fields of psychiatry and neurosurgery.
Key words
Functional MRI - dynamic contrast enhanced-MRI - dynamic susceptibility contrast-MRI
- BOLD-fMRI - ASL
Literatur
1
Degani H, Gusis V, Weinstein D. et al .
Mapping pathophysiological features of breast tumors by MRI at high spatial resolution.
Nature Medicine.
1997;
3
780-782
2
Brix G, Semmler W, Port R. et al .
Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging.
J Comput Assist Tomogr.
1991;
15
621-628
3
Frouge C, Guinebretiere J M, Contesso G. et al .
Correlation between contrast enhancement in dynamic magnetic resonance imaging of
the breast and tumor angiogenesis.
Invest Radiol.
2004;
29
1043-1049
4
Knopp M V, von Tengg-Kobligk H, Floemer F. et al .
Contrast agents for MRA: future directions.
J Magn Reson Imag.
1994;
10
314-316
5
Tofts P S, Brix G, Buckley D L. et al .
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of
a diffusable tracer: standardized quantities and symbols.
J Magn Reson Imag.
1999;
10
223-232
6
Harrer J U, Parker G J, Heeger D J. et al .
Comparative study of methods for determining vascular permeability and blood volume
in human gliomas.
J Magn Reson Imaging.
2004;
20
748-757
7
Scholdei R, Wenz F, Essig M. et al .
Simultane Bestimmung der arteriellen Inputfunktion für die dynamische susceptibilitätsgewichtete
Magnetresonanz-tomographie aus der A. carotis interna und der A. cerebri media.
Fortschr Röntgenstr.
1999;
171
38-43
8
Cha S, Knopp E A.
Dynamic contrast-enhanced T2*-weighted MR imaging of recurrent malignant gliomas treated
with thalidomide and carboplatin.
Am J Neuroradiol.
2000;
21
881-890
9
Rempp K A, Brix G, Wenz F. et al .
Quantification of Regional Cerebral Blood Flow and Volume with Dynamic Susceptibility
Contrast-enhanced MR Imaging.
Radiology.
1994;
193
637-641
10
Sugahara T, Korogi Y, Tomiguchi S. et al .
Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced
MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing
tissue.
Am J Neuroradiol.
2000;
21
901-909
11
Benner T, Heiland S, Erb G. et al .
Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast
enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise.
Mag Reson Imag.
1997;
15
307-317
12
Rosen B R, Belliveau J W, Vevea J M. et al .
Perfusion Imaging with NMR Contrast Agnets.
Mag Reson Med.
1990;
14
249-265
13
Calamante F, Gadian D G, Connelly A.
Delay and Dispersion Effects in Dynamic Susceptibility Contrast MRI: Simulations Using
Singular Value Decomposition.
Mag Reson Med.
2000;
44
466-473
14
Casey S O, Sampaio R C, Michel E. et al .
Posterior reversible encephalopathy syndrome: utility of fluid-attenuated inversion
recovery MR imaging in the detection of cortical and subcortical lesions.
Am J Neuroradiol.
2000;
21
1199-1206
15
Østergaard L, Weisskoff R M, Chesler D A. et al .
High resolution measurement of cerebral blood flow using intravascular tracer bolus
passages. Part I: Mathematical approach and statistical analysis.
Mag Reson Med.
1996;
36
715-725
16
Finocchi V, Bozzao A, Bonamini M. et al .
Magnetic resonance imaging in Posterior Reversible Encephalopathy Syndrome: report
of three cases and review of literature.
Arch Gynecol Obstet.
2005;
271
79-85
17
Trommer B L, Homer D, Mikhael M A.
Cerebral vasospasm and eclampsia.
Stroke.
1988;
19
326-329
18
Petrella J R, Provenzale J M.
MR-Perfusion Imaging of the Brain: Techniques and Applications.
Am J Radiol.
2000;
175
207-219
19
Meier P, Zierler K L.
On the theory of the indicator-dilution method for measurement of blood flow and volume.
J Appl Physiol.
1954;
6
731-744
20
Schaefer P W, Buonanno F S, Gonzalez R G. et al .
Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in
a patient with eclampsia.
Stroke.
1997;
28
1082-1085
21
Barbier E L, den B oer JA, Peters A R. et al .
A model of the dual effect of gadopentetate dimeglumine on dynamic brain MR images.
Mag Reson Imag.
1999;
10
242-253
22
Hacklander T, Reichenbach J R, Modder U.
Comparison of cerebral blood volume measurements using the T1 and T2* methods in normal
human brains and brain tumors.
J Comput Assist Tomogr.
2004;
21
857-866
23
Sugahara T, Korogi Y, Kochi M. et al .
Correlation of MR imaging-determined cerebral blood volume maps with histologic and
angiographic determination of vascularity of gliomas.
Am J Roentgenol.
1998;
171
1479-1486
24
Ogawa S, Lee T M, Kay A R. et al .
Brain magnetic resonance imaging with contrast dependent on blood oxygenation.
PNAS.
1990;
87
9868-9872
25
Buxton R B.
The elusive initial dip.
NeuroImage.
2001;
13
953-958
26
Hoge R D, Atkinson J, Gill B. et al .
Investigation of BOLD Signal Dependence on Cerebral Blood Flow and Oxygen Consumption:
The Deoxyhemoglobin Dilution Model.
Mag Reson Med.
1999;
42
849-863
27
Buxton R B, Wong E C, Frank L R.
Dynamics of blood flow and oxygenation changes during brain activation: The balloon
model.
Mag Reson Med.
1998;
39
855-864
28
Howseman A M, Bowtell R W.
Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.
Philos Trans R Soc Lond B Biol Sci.
1999;
354
1179-1194
29
Krings T, Reinges M H, Willmes K. et al .
Functional MRI for presurgical planning: problems, artefacts, and solution strategies.
J Neurol Neurosurg Psychiatry.
2002;
70
749-760
30
Logothetis N K, Pauls J, Augath M. et al .
Neurophysiological investigation of the basis of the fMRI signal.
Nature.
2001;
412
150-157
31
Cohen M S.
Parametric Analysis of fMRI Data Using Linear Systems Methods.
NeuroImage.
1997;
6
93-103
32
Friston K J, Frith C D, Turner R. et al .
Characterizing Evoked Hemodynamics with fMRI.
NeuroImage.
1995;
2
157-165
33
Friston K J, Mechelli A, Turner R. et al .
Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics.
NeuroImage.
2000;
12
466-477
34
Villringer A, Dirnagl U.
Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging.
Cerebrovasc.
Brain Metab Rev.
1995;
7
240-276
35
Cohen E R, Rostrup E, Sidaros K. et al .
Hypercapnic Normalization of BOLD fMRI Data: Comparision Across Field Strengths and
Pulse Sequences.
Proceedings of the International Society of Mag Reson Med.
2003;
11
1767
36
Schad L R, Wenz F, Baudendistel K. et al .
Functional 2D and 3D magnetic resonance imaging of motor cortex stimulation at high
spatial resolution using standard 1.5 T imager.
Magn Reson Imag.
1994;
12
9-15
37
Constable R T, Kennan R P, Puce A. et al .
Functional NMR imaging using fast spin echo at 1.5 T.
Magn Reson Med.
1994;
31
686-690
38
Küger G, Kastrup A, Glover G H.
Neuroimaging at 1.5 and at 3.0 Tesla: Comparison of Oxygenation-Sensitive Magnetic
Resonance Imaging.
Mag Reson Med.
2001;
45
595-604
39
Wustenberg T, Giesel F L, Strasburger H.
Methodological principles for optimising functional MRI experiments.
Radiologe.
2005;
45
99-112
40
Wustenberg T, Jordan K, Giesel F L. et al .
Physiological and technical limitations of functional magnetic resonance imaging (fMRI)
- consequences for clinical use.
Radiologe.
2003;
43
552-557
41
Nielson K A, Langenbecker S A, Ross T J. et al .
Comparatibility of functional MRI response in young and old during inhibition.
NeuroReport.
2004;
15
129-133
42
Riecker A, Grodd W, Klose U. et al .
Relation Betwenn Regional Functional MRI Activation and Vascular Reactivity to Carbon
Dioxide During Normal Aging.
J Cereb Blood Metab.
2003;
23
565-573
43
Rother J, Knab R, Hamzei F. et al .
Negative dip in BOLD fMRI is caused by blood flow - oxygen consumption uncoupling
in humans.
NeuroImage.
2002;
15
98-102
44
Fernández G, de Greiff A, von Oertzen J. et al .
Language Mapping in Less Than 15 Minutes: Real-Time Functional MRI during Routine
Clinical Investigation.
NeuroImage.
2001;
14
585-594
45
Giesel F L, Hohmann N, Seidl U. et al .
Working memory in volunteers and schizophrenics using BOLD fMRI.
Radiologe.
2005 (in Druck);
46
Detre J A, Leigh J S, Williams D S. et al .
Perfusion imaging.
Mag Reson Med.
1992;
23
37-45
47
Williams D S, Detre J A, Leigh J S. et al .
Magnetic resonance imaging of perfusion using spin inversion of arterial water.
PNAS.
1992;
89
212-216
48
Zhang W, Williams D S, Detre J A. et al .
Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion
of arterial water spins: accounting for transit time and cross-relaxation.
Mag Reson Med.
1992;
25
362-371
49
Alsop D C, Detre J A.
Multisection cerebral blood flow MR imaging with continuous arterial spin labeling.
Radiology.
1998;
208
410-416
50
Talangala S L.
Multi-Slice perfusion MRI using continuous arterial water labelling controlling for
MT effects with simultaneous proximal and distal RF irradiation.
Proc of the 6th annual meeting of the ISMRM.
1998;
6
381
51
Silva A C, Zhang W, Williams D S. et al .
Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial
spin labeling.
Mag Reson Med.
1995;
33
209-214
52
Zhang W, Silva A C, Williams D S. et al .
NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular
spins.
Mag Reson Med.
1995;
33
370-376
53
Zaharchuk G, Ledden P J, Kwong K K. et al .
Multislice perfusion and perfusion territory imaging in humans with separate label
and image coils.
Mag Reson Med.
1999;
41
1093-1098
54
Edelman R R, Siewert B, Darby D G. et al .
Qualitative mapping of cerebral blood flow and functional localization with echo-planar
MR imaging and signal targeting with alternating radio frequency.
Radiology.
1994;
192
513-520
55
Chen Q, Siewert B, Bly B M. et al .
STAR-HASTE: perfusion imaging without magnetic susceptibility artifact.
Mag Reson Med.
1997;
338
404-408
56
Wong E C, Buxton R B, Frank L R.
Implementation of quantitative perfusion imaging techniques for functional brain mapping
using pulsed arterial spin labeling.
NMR in Biomed.
1997;
10
237-249
57
Kim S G, Tsekos N V.
Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique:
application to functional brain imaging.
Mag Reson Med.
1997;
37
425-435
58
Kim S G.
Quantification of relative cerebral blood flow change by flow-sensitive alternating
inversion recovery (FAIR) technique: application to functional mapping.
Mag Reson Med.
2004;
34
293-301
59
Helpern J A, Branch C A, Yongbi M N. et al .
Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR).
Mag Reson Med.
2004;
15
135-139
60
Zhou J, Mori S, van Zijl P C.
FAIR excluding radiation damping (FAIRER).
Mag Reson Med.
1998;
40
712-719
61
Wong E C, Buxton R B, Frank L R.
Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II).
Mag Reson Med.
1998;
39
702-708
62
Wong E C, Buxton R B, Frank L R.
Quantitative perfusion imaging using arterial spin labeling.
Neuroimaging Clin N Am.
1999;
9
333-342
63
Luh W M, Wong E C, Bandettini P A. et al .
QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy
of quantitative perfusion imaging using pulsed arterial spin labeling.
Mag Reson Med.
1999;
41
1246-1254
64
Gunther M, Bock M, Schad L R.
Arterial spin labeling in combination with a look-locker sampling strategy: inflow
turbo-sampling EPI-FAIR (ITS-FAIR).
Mag Reson Med.
2001;
46
974-984
65
Barbier E L, Lamalle L, Decorps M.
Methodology of brain perfusion imaging.
J Magn Reson Imag.
2001;
13
496-520
66
Forman S D, Silva A C, Dedousis N. et al .
Simultaneous glutamate and perfusion fMRI responses to regional brain stimulation.
J Cereb Blood Metab.
1998;
18
1064-1070
67
Hendrich K S, Kochanek P M, Melik J A.
Assesment of cerebral blood flow during anesthesia with fentanyl, isoflurane, or pentobarbital
in normal rats.
Proc of the 8th annual meeting of the ISMRM.
2000;
8
1277
68
Weber M A, Gunther M, Lichy M P. et al .
Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted
contrast-enhanced MRI in perfusion imaging of normal brain tissue.
Invest Radiol.
2003;
38
712-718
69
Weber M A, Thilmann C, Lichy M P. et al .
Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic
susceptibility-weighted contrast-enhanced perfusion MRI: initial results.
Invest Radiol.
2004;
39
277-287
Dr. med. Frederik Lars Giesel
Radiologie, Deutsches Krebsforschungszentrum (DKFZ)
INF 280
69120 Heidelberg
Phone: ++ 49/62 21/42-24 92
Fax: ++ 49/62 21/42-24 62
Email: f.giesel@dkfz.de