Plant Biol (Stuttg) 2005; 7(2): 131-139
DOI: 10.1055/s-2005-837494
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Parthenocarpic Fruit Development in Tomato

B. Gorguet1 , A. W. van Heusden1 , P. Lindhout1
  • 1Laboratory of Plant Breeding, Graduate School of Plant Sciences, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
Further Information

Publication History

Received: January 16, 2004

Accepted: August 17, 2004

Publication Date:
21 March 2005 (online)

Abstract

Parthenocarpic fruit development is a very attractive trait for growers and consumers. In tomato, three main sources of facultative parthenocarpy, pat, pat-2, pat-3/pat-4, are known to have potential applications in agriculture. The parthenocarpic fruit development in these lines is triggered by a deregulation of the hormonal balance in some specific tissues. Auxins and gibberellins are considered as the key elements in parthenocarpic fruit development of those lines. An increased level of these hormones in the ovary can substitute for pollination and trigger fruit development. This has opened up genetic engineering approaches for parthenocarpy that have given promising results, both in quality and quantity of seedless fruit production.

References

  • 1 Acciarri N., Restaino F., Vitelli G., Perrone D., Zottini M., Pandolfini T., Spena A., Rotino G. L.. Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation.  BMC Biotechnology. (2002);  2 4
  • 2 Alabadí D., Aguero M. S., Pérez-Amador M. A., Carbonell J.. Arginase, arginine decarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries: changes in unpollinated ovaries and parthenocarpic fruits induced by auxin and gibberellin.  Plant Physiology. (1996);  112 1237-1244
  • 3 Ampomah-Dwamena C., Morris B. A., Sutherland P., Veit B., Yao J. L.. Down-Regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion.  Plant Physiology. (2002);  130 605-617
  • 4 Archbold D. D., Dennis F. G.. Strawberry receptacle growth and endogenous IAA content as affected by growth regulator application and achene removal.  Journal of the American Society for Horticultural Science. (1985);  110 816-820
  • 5 Asahira T., Takeda Y., Nishio T., Hirabayashi M., Tsukamoto Y.. Studies on fruit development in tomato. I. Ovule development and content of diffusible auxin- and gibberellin-induced parthenocarpic tomato fruits in relation to their development.  Memoirs of the Research Institute for Food Science Kyoto University. (1967);  28 47-74
  • 6 Balbi V., Lomax T. L.. Regulation of early tomato fruit development by the Diageotropica gene.  Plant Physiology. (2003);  131 186-197
  • 7 Barendse G. W. M., Kepczynski J., Karssen C. M., Koornneef M.. The role of endogenous gibberellins during fruit and seed development: studies on gibberellin-deficient genotypes of Arabidopsis thaliana. .  Physiologia Plantarum. (1986);  67 315-319
  • 8 Barg R., Salts Y.. Method for the induction of genetic parthenocarpy in plants. US Patent 6114602. (2000)
  • 9 Bedinger P.. The remarkable biology of pollen.  Plant Cell. (1992);  4 879-887
  • 10 Ben-Cheikh W., Perez-Botella J., Tadeo F. R., Talon M., Primo-Millo E.. Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus.  Plant Physiology. (1997);  114 557-564
  • 11 Beraldi D., Picarella M., Soressi G. P., Mazzucato A.. Fine mapping of the parthenocarpic fruit (pat) mutation in tomato.  Theoretical and Applied Genetics. (2004);  108 209-216
  • 12 Bianchi A., Soressi G. P.. Mutanti di pomodoro artificialmente indotti suscettibili di utilizzazione nel miglioramento genetico.  Sementi Elette. (1969);  XV 2-6
  • 13 Bunger-Kibler S., Bangerth F.. Relationship between cell number, cell size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill.), and those induced parthenocarpically by the application of plant growth regulators.  Plant Growth Regulation. (1982);  1 143-154
  • 14 Carmi N., Salts Y., Dedicova B., Shabtai S., Barg R.. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary.  Planta. (2003);  217 726-735
  • 15 Carmi N., Salts Y., Dedicova B., Shabtai S., Pilowsky M., Barg R.. Transgenic parthenocarpy due to specific over-sensitization of the ovary to auxin.  Acta Horticulturae. (1997);  447 579-581
  • 16 Charles W. B., Harris R. E.. Tomato fruit-set at high and low temperatures.  Canadian Journal of Plant Science. (1972);  52 497-506
  • 17 DeLong A., Calderon-Urrea A., Dellaporta S. L.. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion.  Cell. (1993);  74 757-768
  • 18 Donzella G., Spena A., Rotino G. L.. Transgenic parthenocarpic eggplants: superior germplasm for increased winter production.  Molecular Breeding. (2000);  6 79-86
  • 19 Dumas C., Mogensen H. L.. Gametes and fertilization: Maize as a model system for experimental embryogenesis in flowering plants.  Plant Cell. (1993);  5 1337-1348
  • 20 Eeuwens C. J., Schwabe W. W.. Seed and pod wall developments in Pisum sativum L. in relation to extracted and applied hormones.  Journal of Experimental Botany. (1975);  26 1-14
  • 21 Falavigna A., Badino M., Soressi G. P.. Potential of the monomendelian factor pat in the tomato breeding for industry.  Genetica Agraria. (1978);  32 160-(Abstract)
  • 22 Feys B. F., Benedetti C. E., Penford C. N., Turner J. G.. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen.  Plant Cell. (1994);  6 751-759
  • 23 Ficcadenti N., Sestili S., Pandolfini T., Cirillo C., Rotino G. L., Spena A.. Genetic engineering of parthenocarpic fruit development in tomato.  Molecular Breeding. (1999);  5 463-470
  • 24 Fos M., Nuez F.. Molecular expression of genes involved in parthenocarpic fruit set in tomato.  Physiologia Plantarum. (1996);  98 165-171
  • 25 Fos M., Nuez F.. Expression of genes associated with natural parthenocarpy in tomato ovaries.  Journal of Plant Physiology. (1997);  151 235-238
  • 26 Fos M., Nuez F., Garcia-Martinez J. L.. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries.  Plant Physiology. (2000);  122 471-479
  • 27 Fos M., Proano K., Alabadí D., Nuez F., Carbonell J., García-Martínez J. L.. Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovaries.  Plant Physiology. (2003);  131 359-366
  • 28 Fos M., Proano K., Nuez F., Garcia-Martinez J. L.. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato.  Physiologia Plantarum. (2001);  111 545-550
  • 29 García-Martínez J. L., López-Diaz I., Sánchez-Beltrán M. J., Phillips A. L., Ward D. A., Gaskin P., Hedden P.. Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development.  Plant Molecular Biology. (1997);  33 1073-1084
  • 30 García-Martínez J. L., Martí M., Sabater T., Maldonado A., Vercher Y.. Development of fertilized ovules and their role in the growth of the pea pod.  Physiologia Plantarum. (1991 a);  83 411-416
  • 31 García-Martínez J. L., Santes C., Croker S. J., Hedden P.. Identification, quantification and distribution of gibberellins in fruits of Pisum sativum L. cv. Alaska during pod development.  Planta. (1991 b);  184 53-60
  • 32 George W., Scott J., Spilttstoesser W.. Parthenocarpy in tomato.  Horticultural Reviews. (1984);  6 65-84
  • 33 Georgiev H.. Heterosis in tomato breeding. Kalloo, G., ed. Genetic Improvement of Tomato, Monographs on Theoretical and Applied Genetics. Berlin; Springer-Verlag (1991): 83-98
  • 34 Gillaspy G., Ben-David H., Gruissem W.. Fruits: a developmental perspective.  Plant Cell. (1993);  5 1439-1451
  • 35 Goldberg R. B., Beals T. P., Sanders P. M.. Anther development: Basic principles and practical applications.  Plant Cell. (1993);  5 1217-1229
  • 36 Goldberg R. B., Sanders P. M., Beals T. P.. A novel cell-ablation strategy for studying plant development.  Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. (1995);  350 5-17
  • 37 Greb T., Schmitz G., Theres K.. Isolation and characterization of the Spindly homologue from tomato.  Journal of Experimental Botany. (2002);  53 1829-1830
  • 38 Groot S. P. C., Bruinsma J., Karssen C. M.. The role of endogenous gibberellin in seed and fruit development of tomato: Studies with a gibberellin-deficient mutant.  Physiologia Plantarum. (1987);  71 184-190
  • 39 Gustafson F. G.. Inducement of fruit development by growth promoting chemicals.  Proceedings of the National Academy of Sciences of the USA. (1936);  22 628-636
  • 40 Gustafson F. G.. Parthenocarpy: natural and artificial.  Botanical Review. (1942);  8 599-654
  • 41 Howlett F. S.. The modification of flower structure by environment in varieties of Lycopersicon esculentum. .  Journal of Agricultural Resources. (1939);  58 79-117
  • 42 Huang S., Cerny R. E., Qi Y., Bhat D., Aydt C. M., Hanson D. D., Malloy K. P., Ness L. A.. Transgenic studies on the involvement of cytokinin and gibberellin in male development.  Plant Physiology. (2003);  131 1270-1282
  • 43 Ishiguro S., Kawai-Oda A., Ueda K., Nishida I., Okada K.. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. .  Plant Cell. (2001);  13 2191-2209
  • 44 Iwahori S.. High temperature injuries. V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature.  Journal of the Japanese Society for Horticultural Science. (1966);  35 379-386
  • 45 Jacobsen S. E., Binkowski K. A., Olszewski N. E.. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. .  Proceedings of the National Academy of Sciences of the USA. (1996);  93 9292-9296
  • 46 Jacobsen S. E., Olszewski N. E.. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato.  Plant Physiology. (1991);  97 409-414
  • 47 Jacobsen S. E., Olszewski N. E.. Mutations at the SPINDLY locus of Arabidopsis alter signal transduction.  Plant Cell. (1993);  5 887-896
  • 48 Kataoka K., Uemachi A., Yazawa S.. Fruit growth and pseudoembryo development affected by uniconazole, an inhibitor of gibberellin biosynthesis, in pat-2 and auxin-induced parthenocarpic tomato fruits.  Scientia Horticulturae. (2003);  98 9-16
  • 49 Kataoka K., Uemachi A., Nonaka M., Yazawa S.. Effect of endogenous gibberellins in the early stages of fruit growth and development of the “Severianin” tomato.  Journal of Horticultural Science and Biotechnology. (2004);  79 54-58
  • 122 Kojima K., Sakurai N., Tsurusaki K.. IAA distribution within tomato flower and fruit.  HortScience. (1994);  29 1200
  • 50 Kojima K., Tamura Y., Nakano M., Han D.-S., Niimi Y.. Distribution of indole-acetic acid, gibberellin and cytokinins in apoplast and symplast of parthenocarpic tomato fruits.  Plant Growth Regulation. (2003);  41 99-104
  • 51 Koltunow A. M., Grossniklaus U.. Apomixis: A developmental perspective.  Annual Review of Plant Biology. (2003);  54 547-574
  • 52 Lifschitz E., Brodai L., Hareven D., Hurwitz C., Prihadash A., Pnueli L., Samach A., Zamir D.. Molecular mapping of flower development in tomato. Yoder, J., ed. Molecular Biology of Tomato. Lancaster, PA, USA; Technomic Publishing Co. Inc. (1993): 175-184
  • 53 Lin S., Splittstoesser W. E., George W. L.. A comparison of normal seeds and pseudoembryos produced in parthenocarpic fruit of “Severianin” tomato.  HortScience. (1983);  18 75-76
  • 54 Lin S., George W. L., Splittstoesser W. E.. Expression and inheritance of parthenocarpy in “Severianin” tomato.  The Journal of Heredity. (1984);  75 62-66
  • 55 Lukyanenko A. N.. Parthenocarpy in tomato. Kalloo, G., ed. Genetic Improvement of Tomato, Monographs on Theoretical and Applied Genetics. Berlin; Springer-Verlag (1991): 167-177
  • 56 Magrelli A., Langenkemper K., Dehio C., Schell J., Spena A.. Splicing of the rolA transcript of Agrobacterium rhizogenes in Arabidopsis. .  Science. (1994);  266 1986-1988
  • 57 Mapelli S., Frova C., Torti G., Soressi G. P.. Relationship between set, development and activities of growth regulators in tomato fruits.  Plant and Cell Physiology. (1978);  19 1281-1288
  • 58 Mascarenhas J. P.. Molecular mechanisms of pollen tube growth and differentiation.  Plant Cell. (1993);  5 1303-1314
  • 59 Mazzucato A., Taddei A. R., Soressi G. P.. The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development.  Development. (1998);  125 107-114
  • 60 Mazzucato A., Testa G., Biancari T., Soressi G. P.. Effect of gibberellic acid treatments, environmental conditions, and genetic background on the expression of the parthenocarpic fruit mutation in tomato.  Protoplasma. (1999);  208 18-25
  • 61 Mazzucato A., Olimpieri I., Ciampolini F., Cresti M., Soressi G. P.. A defective pollen-pistil interaction contributes to hamper seed set in the parthenocarpic fruit tomato mutant.  Sexual Plant Reproduction. (2003);  16 157-164
  • 62 Nester J. E., Zeevaart J. A. D.. Flower development in normal tomato and a gibberellin-deficient (ga-2) mutant.  American Journal of Botany. (1988);  75 45-55
  • 63 Nitsch J. P.. Growth and morphogenesis of the strawberry as related to auxin.  American Journal of Botany. (1950);  37 211-215
  • 64 Nitsch J. P.. Plant hormones in the development of fruits.  The Quarterly Review of Biology. (1952);  27 33-57
  • 65 Nitsch J. P.. Hormonal factors in growth and development. Hulme, A. C., ed. The Biochemistry of Fruits and their Products, Vol. II. London; Academic Press (1970): 427-472
  • 66 Nitsch J. P.. Perrenation through seeds and other structures. Steward, F. C., ed. Plant Physiol., 6A: Physiology of Development: Plants and their Reproduction. New York; Academic Press (1972)
  • 67 Nogler G. A.. Gametophytic apomixis. In Embryology of Angiosperms, Berlin, Germany; Springer Verlag (1984): 475-518
  • 68 Nuez F., Costa J., Cuartero J.. Genetics of the parthenocarpy for tomato varieties “Sub-Artic Plenty”, “75/59” and “Severianin”.  Zeitschrift für Pflanzenzüchtung. (1986);  96 200-206
  • 69 Olszewski N., Sun T.-P., Gubler F.. Gibberellin signaling: Biosynthesis, catabolism, and response pathways.  Plant Cell. (2002);  14 S61-S80
  • 70 O'Neill S. D., Nadeau J. A.. Post-pollination flower development.  Horticultural Reviews. (1997);  19 1-58
  • 71 Osborne D. J., Went F. W.. Climatic factors influencing parthenocarpy and normal fruit-set in tomatoes.  Botanical Gazette. (1953);  114 313-322
  • 72 Ozga J. A., Yu J., Reinecke D. M.. Pollination-, development-, and auxin-specific regulation of gibberellin 3beta-hydroxylase gene expression in pea fruit and seeds.  Plant Physiology. (2003);  131 1137-1146
  • 73 Pandolfini T., Rotino G. L., Camerini S., Defez R., Spena A.. Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes.  BMC Biotechnology. (2002);  2 1
  • 74 Park J. H., Halitschke R., Kim H. B., Baldwin I. T., Feldmann K. A., Feyereisen R.. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis.  The Plant Journal. (2002);  31 1-12
  • 75 Pecaut P., Philouze J.. A sha-pat line obtained by natural mutation.  Tomato Genetics Cooperative Reports. (1978);  28 12
  • 76 Peng J., Carol P., Richards D. E., King K. E., Cowling R. J., Murphy G. P., Harberd N. P.. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses.  Genes and Development. (1997);  11 3194-3205
  • 77 Philouze J.. Epistasic relations between ls and pat-2. .  Tomato Genetics Cooperative Reports. (1983 a);  33 9-12
  • 78 Philouze J.. Natural parthenocarpy in tomato. I. Bibliographical review.  Agronomie. (1983 b);  3 611-620
  • 79 Philouze J.. Parthenocarpie naturelle chez la tomate. II. Etude d'une collection varietale.  Agronomie. (1985);  5 47-54
  • 80 Philouze J.. Natural parthenocarpy in tomato. IV. A study of the polygenic control of parthenocarpy in line 75/59.  Agronomie. (1989);  9 63-75
  • 81 Philouze J., Buret M., Duprat F., Nicolas-Grotte M., Nicolas J.. Caracteristiques agronomiques et physico-chimiques de lignées de tomates isogéniques, sauf pour le gene pat-2 de parthenocarpie, dans trois types variétaux, en culture de printemps, sous serre plastique très peu chauffée.  Agronomie. (1988);  8 817-828
  • 82 Philouze J., Maisonneuve B.. Heredity of the natural ability to set parthenocarpic fruits in the Soviet variety Severianin.  Tomato Genetics Cooperative Reports. (1978);  28 12-13
  • 83 Philouze J., Pecaut P.. Natural parthenocarpy in tomato. III. Study of the parthenocarpy due to the gene pat (parthenocarpic fruit) in the line Montfavet 191.  Agronomie. (1986);  6 243-248
  • 84 Pnueli L., Hareven D., Broday L., Hurwitz C., Lifschitz E.. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers.  Plant Cell. (1994);  6 175-186
  • 85 Rick C. M.. The tomato.  Scientific American. (1978);  239 77-87
  • 86 Rieu I., Wolters-Arts M., Derksen J., Mariani C., Weterings K.. Ethylene regulates the timing of anther dehiscence in tobacco.  Planta. (2003);  217 131-137
  • 87 Rodrigo M. J., García-Martínez J. L., Santes C., Gaskin P., Hedden P.. The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds.  Planta. (1997);  201 446-455
  • 88 Ross J., O'Neill D.. New interactions between classical plant hormones.  Trends in Plant Sciences. (2001);  6 2-4
  • 89 Ross J. J., O'Neill D. P., Smith J. J., Huub L., Kerckhoffs J., Elliott R. C.. Evidence that auxin promotes gibberellin A1 biosynthesis in pea.  The Plant Journal. (2000);  21 547-552
  • 90 Rotino G. L., Perri E., Zottini M., Sommer H., Spena A.. Genetic engineering of parthenocarpic plants.  Nature Biotechnology. (1997);  15 1398-1401
  • 91 Rudich J., Zamski E., Regev Y.. Genotypic variation for sensitivity to high temperature in the tomato: pollination and fruit set.  Botanical Gazette. (1977);  138 448-452
  • 92 Sanders P. M., Lee P. Y., Biesgen C., Boone J. D., Beals T. P., Weiler E. W., Goldberg R. B.. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway.  Plant Cell. (2000);  12 1041-1061
  • 93 Sawhney V. K.. Morphogenesis of the stamenless-2 mutant of tomato: III. Relative levels of gibberellins in the normal and mutant plants.  Journal of Experimental Botany. (1974);  25 1004-1009
  • 94 Sawhney V. K., Shukla A.. Male sterility in flowering plants: Are plant growth substances involved?.  American Journal of Botany. (1994);  81 1640-1647
  • 95 Schmulling T., Schell J., Spena A.. Single genes from Agrobacterium rhizogenes influence plant development.  European Molecular Biology Organization Journal. (1988);  7 2621-2629
  • 96 Schumacher K., Schmitt T., Rossberg M., Schmitz G., Theres K.. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family.  Proceedings of the National Academy of Sciences of the USA. (1999);  96 290-295
  • 97 Schwabe W. W., Mills J. J.. Hormones and parthenocarpic fruit set: A literature survey.  Horticultural Abstracts. (1981);  51 661-699
  • 98 Sjut V., Bangerth F.. Induced parthenocarpy: a way of changing the levels of endogenous hormones in tomato fruits (Lycopersicon esculentum Mill.): 1. Extractable hormones.  Plant Growth Regulation. (1982);  1 243-251
  • 99 Soressi G. P., Salamini F.. A monomendelian gene inducing parthenocarpic fruits.  Tomato Genetics Cooperative Reports. (1975);  25 22
  • 100 Spena A., Langenkemper K.. Mutational analysis of the rolA gene of Agrobacterium rhizogenes in tobacco: function of the rolA pre-mRNA intron and rolA proteins defective in their biological activity.  Genetical Research. (1997);  69 11-15
  • 101 Spena A., Rotino G. L.. Parthenocarpy: state of the art. Bhojwani, S. S. and Soh, W. Y., eds Current Trends in the Embryology of Angiosperms. Dordrecht; Kluwer Academic Publishers (2001): 435-450
  • 102 Sponsel V. M.. The localization, metabolism and biological activity of gibberellins in maturing and germinating seeds of Pisum sativum cv. Progess No. 9.  Planta. (1983);  159 454-468
  • 103 Srinivasan A., Morgan D. G.. Growth and development of the pod wall in spring rape (Brassica napus) as related to the presence of seeds and exogenous phytohormones.  Journal of Agricultural Science. (1996);  127 487-500
  • 104 Stintzi A., Browse J.. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 10625-10630
  • 105 Sun T.-P.. Gibberellin signal transduction.  Current Opinion in Plant Biology. (2000);  3 374-380
  • 106 Szymkowiak E. J., Sussex I. M.. Effect of lateral suppressor on petal initiation in tomato.  The Plant Journal. (1993);  4 1-7
  • 107 Talon M., Hedden P., Primo-Millo E.. Gibberellins in Citrus sinensis: a comparison between seeded and seedless varieties.  Journal of Plant Growth Regulation. (1990);  9 201-206
  • 108 Testa G., Caccia R., Tilesi F., Soressi G. P., Mazzucato A.. Sequencing and characterization of tomato genes putatively involved in fruit set and early development.  Sexual Plant Reproduction. (2002);  14 269-277
  • 109 Tucker D. J.. Endogenous growth regulators in relation to side shoot development in the tomato.  New Phytologist. (1976);  77 561-568
  • 110 Van Altvorst A. C., Bino R. J., van Dijk A. J., Lamers A. M. J., Lindhout W. H., van der Mark F., Dons J. J. M.. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development.  Plant Science. (1992);  83 77-85
  • 111 Van Huizen R., Ozga J. A., Reinecke D. M.. Seed and hormonal regulation of gibberellin 20-oxdiase expression in pea pericarp.  Plant Physiology. (1997);  115 123-128
  • 112 Van Huizen R., Ozga J. A., Reinecke D. M., Twitchin B., Mander L. N.. Seed and 4-chloroindole-3-acetic acid regulation of gibberellin metabolism in pea pericarp.  Plant Physiology. (1995);  109 1213-1217
  • 113 Vardy E., Lapushner D., Genizi A., Hewitt J.. Genetics of parthenocarpy in tomato under a low temperature regime: I. Line RP75/59.  Euphytica. (1989 a);  41 1-8
  • 114 Vardy E., Lapushner D., Genizi A., Hewitt J.. Genetics of parthenocarpy in tomato under a low temperature regime: II. Cultivar Severianin.  Euphytica. (1989 b);  41 9-15
  • 115 Varga A., Bruinsma J.. Tomato. Monselise, S. P., ed. CRC Handbook of Fruit Set and Development. Boca Raton, FL; CRC Press (1986): 461-480
  • 116 Varoquaux F., Blanvillain R., Delseny M., Gallois P.. Less is better: new approaches for seedless fruit production.  Trends in Biotechnology. (2000);  18 233-242
  • 117 Vivian-Smith A., Koltunow A. M.. Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. .  Plant Physiology. (1999);  121 437-451
  • 118 Vivian-Smith A., Luo M., Chaudhury A., Koltunow A.. Fruit development is actively restricted in the absence of fertilization in Arabidopsis. .  Development. (2001);  128 2321-2331
  • 119 Von Malek B., van der Graaff E., Schneitz K., Keller B.. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway.  Planta. (2002);  216 187-192
  • 120 Wheeler M. J., Franklin-Tong V. E., Franklin F. C. H.. The molecular and genetic basis of pollen-pistil interactions.  New Phytologist. (2001);  151 565-584
  • 121 Xie D. X., Feys B. F., James S., Nietorostro M., Turner J. G.. COI1 - an Arabidopsis gene required for jasmonate-regulated defense and fertility.  Science. (1998);  280 1091-1094

B. Gorguet

Laboratory of Plant Breeding
Graduate School of Plant Sciences
Wageningen University

P.O. Box 386

6700 AJ Wageningen

The Netherlands

Email: benoit.gorguet@wur.nl

Editor: J. Raven

    >