Zusammenfassung
Patienten mit Diabetes mellitus (DM) erleiden häufiger einen Myokardinfarkt als Nicht-Diabetiker.
Zusätzlich ist bei diesen Patienten nach einem Infarkt die Letalität deutlich erhöht
und die Langzeitprognose verschlechtert. Die ischämische Präkonditionierung (PC) ist
der stärkste endogene Protektionsmechanismus des Myokards, bei dem kurze Ischämien
das Herz gegen die Folgen nachfolgender Ischämien schützen. Man unterscheidet hierbei
eine frühe Phase der Protektion (frühe PC, EPC), die sofort nach der präkonditionierenden
Ischämie einsetzt und das Herz für 2 - 3 Stunden schützt, und eine späte Phase der
Protektion (späte PC, LPC), die nach 12 - 24 Stunden einsetzt und dann mehrere Tage
anhält. Ursache für die schlechte Prognose von Diabetikern mit Myokardinfarkt könnte
die Blockade des myokardialen Schutzes durch PC sein. So ist im Gegensatz zu Nicht-Diabetikern
bei Infarktpatienten mit DM eine Präinfarktangina nicht mit einem verringerten Zellschaden,
besserer linksventrikulärer Funktion oder reduzierter Letalität assoziiert. Tierexperimentell
konnte gezeigt werden, dass eine kurzfristige Hyperglykämie und ein DM sowohl die
Protektion durch EPC als auch durch LPC aufheben. Es wird vermutet, dass die Blockade
mitochondrialer ATP-sensitiver Kaliumkanäle (KATP) durch die Hyperglykämie hier eine wichtige Rolle spielen. Allerdings gibt es Hinweise,
dass ein DM an weiteren Stellen in die Signaltransduktionskaskade der Präkonditionierung
eingreift. Der Schutz durch LPC konnte nach einer kurzfristigen Blutzuckersenkung
mit Insulin nicht wiederhergestellt werden, während eine längere 2-wöchige Insulintherapie
sowohl den Schutz von EPC als auch von LPC rekrutieren konnte. Da die Aufhebung der
PC auch beim Menschen wahrscheinlich ist, könnte dies die schlechte Prognose von Diabetikern
nach Myokardinfarkt zumindest teilweise erklären. Zum Verständnis des Mechanismus
dieser Blockade sind weitere Untersuchungen notwendig.
Abstract
The incidence of myocardial infarction (MI) in patients with diabetes mellitus (DM)
is higher than in patients without DM. Additionally, mortality is higher and long-term
prognosis is worse in diabetic patients with MI compared with non-diabetic patients.
Ischaemic preconditioning (PC) which is triggered by a short period of ischaemia (like
during angina) is the strongest endogenous mechanism protecting the myocardium against
the consequences of a subsequent ischaemia. There are two phases of protection: an
early phase (early PC, EPC), which starts immediately after the preconditioning ischaemia
and lasts for 2 - 3 hours; and a late phase of protection starting after 12 - 24 hours
and lasting for days (late PC, LPC). A blockade of the protection provided by PC may
be the cause for the poor prognosis of diabetic patients with MI. In contrast to patients
without DM, in diabetic patients, pre-infarct angina is not associated with smaller
cellular damage, better left ventricular performance, or reduced mortality. In animal
studies, it was shown that short-term hyperglycaemia and DM abolish the protection
by EPC as well as LPC. It is assumed that the inhibition of ATP-sensitive potassium
channels (KATP) by hyperglycaemia plays an important role in this setting. However, some findings
suggest that this is not the only site of blockade in the signal transduction cascade
of PC. The protection by LPC could not be restored by short-term insulin treatment,
while protection by both EPC and LPC was restored after two weeks of insulin treatment.
The blockade of PC is also very likely in diabetic patients and may even partly explain
the poor prognosis of these patients after MI. Further studies are needed to elucidate
the mechanism of the blockade of PC.
Schlüsselwörter
Diabetes mellitus - Hyperglykämie - ischämische Präkonditionierung - Myokardischämie
- Myokardinfarkt
Key words
Diabetes mellitus - hyperglycaemia - ischaemic preconditioning - myocardial ischaemia
- myocardial infaction
Literatur
- 1
Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas A M, Pajak A.
Myocardial infarction and coronary deaths in the World Health Organization Monica
Project: registration procedures, event rates, and case-fatality rates in 38 populations
from 21 countries in 4 continents.
Circulation.
1990;
90
583-612
- 2
Feskens E J, Kromhout D.
Glucose tolerance and the risk of cardiovascular disease: the Zutphen Study.
J Clin Epidemiol.
1992;
45
1327-1334
- 3
Kannel W B, McGee D L.
Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham
Study.
Diabetes Care.
1979;
2
120-126
- 4
Jelesoff N E, Feinglos M, Granger C B, Califf R M.
Outcomes of diabetic patients following acute myocardial infarction: a review of the
major thrombolytic trials.
Coron Artery Dis.
1996;
7
732-743
- 5
Haffner S M, Lehto S, Ronnemaa T, Pyorala K.
Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic
subjects with and without prior myocardial infarction.
N Engl J Med.
2001;
339
229-234
- 6
Orlander P R, Goff D C, Morrissey M, Ramsey D J, Wear M L, Labarthe D R, Nichaman M Z.
The relation of diabetes to the severity of acute myocardial infarction and post-myocardial
infarction survival in Mexican-Americans and non-Hispanic whites. The Corpus Christi
Heart Project.
Diabetes.
1994;
43
897-902
- 7
Bellodi G, Manicardi V, Malavasi V, Veneri L, Bernini G, Bossini P, Distefano S, Magnanini G,
Muratori L, Rossi G, Zuarini A.
Hyperglycemia and prognosis of acute myocardial infarction in patients without diabetes
mellitus.
Am J Cardiol.
1989;
64
885-888
- 8
Malmberg K, Ryden L, Hamsten A, Herlitz J, Waldenström A, Wedel H.
Mortality prediction in diabetic patients with myocardial infarction: experience from
the DIGAMI study.
Cardiovasc Res.
1997;
34
248-253
- 9
Malmberg K, Norhammar A, Wedel H, Ryden L.
Glycometabolic State at Admission: Important Risk Marker of Mortality in Conventionally
Treated Patients With Diabetes Mellitus and Acute Myocardial Infarction: Long-Term
Results From the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction
(DIGAMI) Study.
Circulation.
1999;
99
2626-2632
- 10
Oswald G A, Smith C C, Betteridge D J, Yudkin J S.
Determinants and importance of stress hyperglycaemia in non-diabetic patients with
myocardial infarction.
Br Med J (Clin Res Ed).
1986;
293
917-922
- 11
Fava S, Aquilina O, Azzopardi J, Muscat H, Fenech F.
The prognostic value of blood glucose in diabetic patients with acute myocardial infarction.
Diabetic Med.
1996;
13
80-83
- 12
Beckman J A, Creager M A, Libby P.
Diabetes and atherosclerosis.
JAMA.
2002;
287
2570-2581
- 13
Murry C E, Jennings R B, Reimer K A.
Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.
Circulation.
1986;
74
1124-1136
- 14
Shiki K, Hearse D J.
Preconditioning of ischemic myocardium: reperfusion induced arrhythmias.
Am J Physiol.
1987;
253
H1470-H1476
- 15
Schulz R, Post H, Sakka S, Wallbridge D R, Heusch G.
Intraischemic preconditioning. Increased tolerance to sustained low-flow ischemia
by a brief episode of no-flow ischemia without intermittent reperfusion.
Circ Res.
1995;
76
942-950
- 16
Winkle D M Van, Thornton J D, Downey J M.
Cardioprotection from ischemic preconditioning is lost following prolonged reperfusion
in the rabbit.
Coron Artery Dis.
1991;
2
613-619
- 17
Arstall M A, Zhao Y Z, Hornberger L, Kennedy S P, Buchholz R A, Osathanondh R, Kelly R A.
Human ventricular myocytes in vitro exhibit both early and delayed preconditioning
responses to simulated ischemia.
J Mol Cell Cardiol.
1998;
30
1019-1025
- 18
Qiu Y M, Tang X L, Park S W, Sun J Z, Kalya A, Bolli R.
The early and late phases of ischemic preconditioning - A comparative analysis of
their effects on infarct size, myocardial stunning, and arrhythmias in conscious pigs
undergoing a 40-minute coronary occlusion.
Circ Res.
1997;
80
730-742
- 19
Rizvi A, Tang X L, Qiu Y, Xuan Y T, Takano H, Jadoon A K, Bolli R.
Increased protein synthesis is necessary for the development of late preconditioning
against myocardial stunning in conscious rabbits.
Am J Physiol.
1999;
277
H874-H884
- 20
Heidland U E, Heintzen M P, Schwartzkopff B, Strauer B E.
Preconditioning during percutaneous transluminal coronary angioplasty by endogenous
and exogenous adenosine.
Am Heart J.
2000;
140
813-820
- 21
Tsuchida A, Liu A, Liu G S, Cohen M V, Downey J M.
Alpha-1-adrenergic agonists precondition rabbit myocardium independent of adenosine
by direct activation of protein kinase C.
Circ Res.
1994;
75
576-585
- 22
Yao Z, Tong J, Tan X, Li C, Shao Z, Kim W C, Vanden Hoek T L, Becker L B, Head C A,
Schumacker P T.
Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes.
Am J Physiol.
1999;
277
H2504-H2509
- 23
McPherson B C, Yao Z.
Signal transduction of opioid-induced cardioprotection in ischemia-reperfusion.
Anesthesiology.
2001;
94
1082-1088
- 24
Schultz J E, Hsu A K, Gross G J.
Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive
mechanism in the rat heart.
Circ Res.
1996;
78
1100-1104
- 25
Hartman J C, Wall T M, Hullinger T G, Shebuski R J.
Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin
antagonist HOE 140.
J Cardiovasc Pharmacol.
1993;
21
996-1003
- 26
Kirsch G E, Codina J, Birnbaumer L, Brown A M.
Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes.
Am J Physiol.
1990;
259
H820-H826
- 27
Schultz J E, Hsu A K, Barbieri J T, Li P I, Gross G J.
Pertussis toxin abolishes the cardioprotective effect of ischemic preconditioning
in intact rat heart.
Am J Physiol.
1998;
275
H495-H500
- 28
Speechly-Dick M E, Grover G J, Yellon D M.
Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent
K+ channel? Studies of contractile function after simulated ischemia in an atrial in
vitro model.
Circ Res.
1995;
77
1030-1035
- 29
Grover G J, Garlid K D.
ATP-sensitive potassium channels: a review of their cardioprotective pharmacology.
J Mol Cell Cardiol.
2000;
32
677-695
- 30
McPherson B C, Yao Z.
Morphine mimics preconditioning via free radical signals and mitochondrial KATP channels in myocytes.
Circulation.
2001;
103
290-295
- 31
Gopalakrishna R, Anderson W B.
Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative
modification of the regulatory domain.
Proc Natl Acad Sci.
1989;
86
6758-6762
- 32
Yang X M, Sato H, Downey J M, Cohen M V.
Protection of ischemic preconditioning is dependent upon a critical timing sequence
of protein kinase C activation.
J Mol Cell Cardiol.
1997;
29
991-999
- 33
Baines C P, Wang L, Cohen M V, Downey H F.
Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning's
anti infarct effect in the rabbit heart.
J Mol Cell Cardiol.
1998;
30
383-392
- 34
Fryer R M, Schultz J J, Hsu A K, Gross G J.
Pretreatment with tyrosine kinase inhibitors partially attenuates ischemic preconditioning
in rat hearts.
Am J Physiol.
1998;
275
H2009-H2015
- 35
Weinbrenner C, Liu G S, Cohen M V, Downey J M.
Phosphorylation of Tyrosine 182 of p38 mitogen activated protein kinase correlates
with the protection of preconditioning in the rabbit heart.
J Mol Cell Cardiol.
1997;
29
2383-2391
- 36
Hattori R, Otani H, Uchiyama T, Imamura H, Cui J, Maulik N, Cordis G A, Zhu L, Das D K.
Src tyrosine kinase is the trigger but not the mediator of ischemic preconditioning.
Am J Physiol Heart Circ Physiol.
2001;
281
H1066-H1074
- 37
Maulik N, Yoshida T, Zu Y L, Sato M, Banerjee A, Das D K.
Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for
MAPKAP kinase 2.
Am J Physiol.
1998;
275
H1857-H1864
- 38
Bolli R.
The late phase of preconditioning.
Circ Res.
2000;
87
972-983
- 39
Müllenheim J, Schlack W, Fräßdorf J, Preckel B, Thämer V.
Additive protective effects of late and early ischaemic preconditioning are mediated
by opening of KATP channels in vivo.
Pflügers Arch Eur J Physiol.
2001;
442
178-187
- 40
Deutsch E, Berger M, Kussmaul W G, Hirshfeld J WJ, Herrmann H C, Laskey W K.
Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical,
hemodynamic, and metabolic features.
Circulation.
1990;
82
2044-2051
- 41
Okazaki Y, Kodama K, Sato H, Kitakaze M, Hirayama A, Mishima M, Hori M, Inoue M.
Attenuation of increased regional myocardial oxygen consumption during exercise as
a major cause of warm-up phenomenon.
J Am Coll Cardiol.
1993;
21
1597-1604
- 42
Kloner R A, Shook T, Przyklenk K, Davis V G, Junio L, Matthews R V, Burstein S, Gibson M,
Poole W K, Cannon C P. et al .
Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning?.
Circulation.
1995;
91
37-45
- 43
Kloner R A, Shook T, Antman E M, Cannon C P, Przyklenk K, Yoo K, McCabe C H, Braunwald E.
Prospective temporal analysis of the onset of preinfarction angina versus outcome:
an ancillary study in TIMI-9B.
Circulation.
1998;
97
1042-1045
- 44
Kersten J R, Schmeling T J, Orth K G, Pagel P S, Warltier D C.
Acute hyperglycemia abolishes ischemic preconditioning in vivo.
Am J Physiol.
1998;
275
H721-H725
- 45
Kersten J R, Toller W G, Gross E R, Pagel P S, Warltier D C.
Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality.
Am J Physiol Heart Circ Physiol.
2000;
278
H1218-H1224
- 46
Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai M Z.
Influence of diabetic state and that of different sulfonylureas on the size of myocardial
infarction with and without ischemic preconditioning in rabbits.
Exp Clin Endocrinol Diabetes.
2002;
110
212-218
- 47
Smith J M, Wahler G M.
ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic
rats.
Mol Cell Biochem.
1996;
158
43-51
- 48
Kersten J R, Montgomery M W, Ghassemi T, Gross E R, Toller W G, Pagel P S, Warltier D C.
Diabetes and hyperglycemia impair activation of mitochondrial KATP channels.
Am J Physiol.
2001;
280
H1744-H1750
- 49
Tanaka K, Kehl F, Gu W, Krolikowski J G, Pagel P S, Warltier D C, Kersten J R.
Isoflurane-induced preconditioning is attenuated by diabetes.
Am J Physiol Heart Circ Physiol.
2002;
282
H2018-H2023
- 50
Tosaki A, Engelman D T, Engelman R M, Das D K.
The evolution of diabetic response to ischemia/reperfusion and preconditioning in
isolated working rat hearts.
Cardiovasc Res.
1996;
31
526-536
- 51
Lu R, Hu C P, Peng J, Deng H W, Li Y J.
Role of calcitonin gene-related peptide in ischaemic preconditioning in diabetic rat
hearts.
Clin Exp Pharmacol Physiol.
2001;
28
392-396
- 52
Ravingerova T, Stetka R, Volkovova K, Pancza D, Dzurba A, Ziegelhöffer A, Styk J.
Acute diabetes modulates response to ischemia in isolated rat heart.
Mol Cell Biochem.
2000;
210
143-151
- 53
Tatsumi T, Matoba S, Kobara M, Keira N, Kawahara A, Tsuruyama K, Tanaka T, Katamura M,
Nakagawa C, Ohta B, Yamahara Y, Asayama J, Nakagawa M.
Energy metabolism after ischemic preconditioning in streptozotocin-induced diabetic
rat hearts.
J Am Coll Cardiol.
1998;
31
707-715
- 54
Ebel D, Müllenheim J, Fräßdorf J, Heinen A, Huhn R, Bohlen T, Ferrari J, Südkamp H,
Preckel B, Schlack W, Thämer V.
Effect of acute hyperglycemia and diabetes mellitus with and without short-term insulin
treatment on myocardial ischemic late preconditioning in the rabbit heart in vivo.
Pflügers Arch Eur J Physiol.
2003;
446
175-182
- 55
Valle H F del, Lascano E C, Negroni J A.
Ischemic preconditioning protection against stunning in conscious diabetic sheep:
role of glucose, insulin, sarcolemmal and mitochondrial KATP channels.
Cardiovasc Res.
2002;
55
642-659
- 56
Ghosh S, Standen N B, Galinanes M.
Failure to precondition pathological human myocardium.
J Am Coll Cardiol.
2001;
37
711-718
- 57
Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Kouno Y, Umemura T.
Diabetes mellitus prevents ischemic preconditioning in patients with a first acute
anterior wall myocardial infarction.
J Am Coll Cardiol.
2001;
38
1007-1011
- 58
Bouchard J F, Lamontagne D.
Protection afforded by preconditioning to the diabetic heart against ischaemic injury.
Cardiovasc Res.
1998;
37
82-90
- 59
Ravingerova T, Stetka R, Pancza D, Ulicna O, Ziegelhöffer A, Styk J.
Susceptibility of ischemia-induced arrhythmias and the effect of preconditioning in
the diabetic rat heart.
Physiol Res.
2000;
49
607-616
Dr. med. Dirk Ebel
Klinik für Anästhesiologie · Universitätsklinikum Düsseldorf
Moorenstraße 5
Postfach 101007
40001 Düsseldorf
Phone: + 49/211/81-18101
Fax: + 49/211/81-16253
Email: ebeld@uni-duesseldorf.de