Sigma receptors were first described as one of the opiate receptor subtypes. Now it
is well established that sigma receptors, existing as subtypes sigma-1 and sigma-2,
are unique non-opioid receptors which are implicated in higher-ordered brain functions.
Sigma-1 receptors have high to moderate affinities for (+)benzomorphans and also many
psychotrophic drugs and neurosteroids. Sigma-1 receptor agonists and certain neurosteroids
such as dehydroepiandrosterone sulfate (DHEA-S) have antidepressant-like effects in
animal behavioral models of depression. The antidepressant-like effect induced by
sigma-1 receptor agonists may involve intracellular Ca2+ mobilization such that sigma-1 receptor agonists modulate Ca2+ release from endoplasmic reticulum (ER) in a cytoskeletal protein-dependent manner.
In addition, growth factor-induced neurite outgrowth is mediated through sigma-1 receptors,
suggesting a role of antidepressants in neuroplasticity. Igmesine (JO1783), OPC-14
523 and SA4503, have recently been developed as sigma-1 agonists and are found to
have antidepressant-like activity perhaps with fewer side effects. This article reviews
the new potential use of sigma-1 receptor ligands in the treatment of mood disorder.
References
- 1
Martin W R, Eades J A, Thompson R E, Huppler P E, Gilbert P E.
The effects of morphine- and nalorphin-like drugs in the nondependent and morphine-dependent
chronic spinal dog.
J Pharmacol Exp Ther.
1976;
197
517-532
- 2
Su T P.
Evidence for sigma opioid receptor: binding of [H3]SKF-10 047 to etorphine-inaccessible sites in guinea-pig brain.
J Pharmacol Exp Ther.
1982;
223
284-290
- 3
Vaupel D B.
Naltrexone fails to antagonize the sigma effects of PCP and SKF-10,047 in the dog.
Eur J Pharmacol.
1983;
92
269-274
- 4
Su T -P.
HR 375: A potential antipsychotic drug that interacts with dopamine D2 receptors and sigma receptors in the brain.
Neurosci Lttr.
1986;
71
224-228
- 5
Shannon H E.
Phencyclidine-like discriminative stimuli of (+)- and (-)-N-allylnormetazocine in
rats.
Eur J Pharmacol.
1982;
84
225-228
- 6
Zukin S R, Brady K T, Silfer BL and Balster R L.
Behavioral and biochemical stereoselectivity of sigma opiate/PCP receptors.
Brain Res.
1984;
294
74-177
- 7
McCann D J, Su T P.
Haloperidol-sensitive (+)-[3H]SKF-10,047 binding sites (σ sites) exhibit an unique distribution in rat brain subcellular
fractions.
Eur J Pharmacol.
1990;
188
211-218
- 8
Quirion R, Chicheportiche R, Contrras P C, Johnson K M, Lodge D, Tam S W, Woods J H,
Zukin S R.
Classification and nomenclature of phencyclidine and sigma receptor sites.
Trends Pharmacol Sci.
1987;
10
444-446
- 9
Walker J M, Bowen W D, Walker F O, Matsumoto R R, Costa BD and Rice K C.
Sigma receptors: Biology and function.
Pharmacol Rev.
1990;
42
355-402
- 10
Quirion R, Bowen W D, Itzhak Y, Junien J L, Musacchio J M, Rothman R B, Su T P, Tam
SW and Tayllor D P.
A proposal for the classification of sigma binding sites.
Trends Pharmacol Sci.
1992;
13
85-86
- 11
Hellewell S B, Bowen W D.
A sigma-like binding site in rat phenochromocytoma (PC12) cells: Decreased affinity
for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor
form from that of guinea pig brain.
Brain Res.
1990;
527
244-253
- 12
Hanner M, Moebius F F, Fladoefer A, Knaus H G, Striessnig J, Kempner E, Glossmann H.
Purification, molecular cloning, and expression of the mammalian sigma1-binding site.
Proc Natl Acad Sci USA.
1996;
93
8072-8077
- 13
Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T.
Immunocytochemical localization of the σ1 receptor in the adult rat central nervous
system.
Neuroscience.
2000;
97
155-170
- 14
Palacios G, Muro A, Vela J M, Molina-Holgado E, Guitart X, Ovalle S, Zamanillo D.
Immunohistochemical localization of the σ1-receptor in oligodendrocytes in the rat central nervous system.
Brain Res.
2003;
961
92-99
- 15
Hayashi T, and Su T P.
Regulating ankyrin dynamics: Roles of sigma-1 receptors.
Proc Natl Acad Sci USA.
2001;
98
491-496
- 16
Su T P, Hayashi T.
Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that
sigma-1 receptors are intracellular amplifiers for signal transduction.
Curr Med Chem..
2003;
10
2073-80
- 17
Hayashi T, Maurice T, Su T P.
Ca2+ signaling via σ1 receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration.
J Pharmacol Exp Ther.
2000;
293
788-798
- 18
Monnet F P, de Costa B R, Bowen W D.
Differentiation of sigma ligand-activated receptor subtypes that modulate NMDA-evoked
[3H]-noradrenaline release in rat hippocampalslices.
Br J Pharmacol.
1996;
119
65-72
- 19
Nuwayhid S and Werling L.
σ1 receptor agonist-mediated regulation of N-methyl-D-aspartate-stimulated [3H]dopamine release is dependent upon protein kinase C.
J Pharmacol Exp Ther.
2003;
304
364-369
- 20
Monnet F P, Morin-Surun M P, Leger J, and Comettes L.
Protein kinase C-dependent potentiation of intracellular calcium influx by σ1 receptor
agonists in rat hippocampal neurons.
J Pharmacol Exp Ther.
2003;
307
705-712
- 21
Bermack J E, Debonnel G.
Modulation of serotonergic neurotransmission by short- and long-term treatments with
sigma ligands.
Br J Pharmacology.
2001;
134
691-696
- 22
Walker J M, Bowen W D, Walker F O, Matsumoto R R, De Costa B, Rice K C.
Sigma receptors: biology and function.
Pharmacol Rev.
1990;
42
355-402
- 23
Su T P, London E D, Jaffe J H.
Steroid binding at σ receptors suggests a link between endocrine, nervous, and immune
systems.
Science.
1988;
240
219-221
- 24
Narita N, hashimoto K, Tomitaka S, Minabe Y.
Interactions of selective serotonin reuptake inhibitors with subtypes of σ receptors
in rat brain.
Eur J Pharmacology.
1996;
307
117-119
- 25
Shirayama Y, Takahashi K, Nishikawa T.
Uncompetitive inhibition of [3H]1,3-di-o-tolyl-guanidinepdefined s binding sites by desipramine, propranolol and
alprenolol in rat brain.
Eur J Pharmacology.
1997;
331
319-323
- 26
Rao T S, Cler J A, Mick S J, Dilworth V M, Contreras P C, Iyengar S, Wood P L.
Neurochemical characterization of dopaminergic effects of opipramol, a potent sigma
receptor ligand, in vivo.
Neuropharmacology.
1990;
12
1191-1197
- 27
Largent B L, Wikstrom H, Gundlach A L, Snyder S H.
Structural determinants of σ receptor affinity.
J Pharmacol Exp Therapeutics.
1987;
32
772-784
- 28
Itzhak Y, Stein I, Zhang S -H, Kassim CO and Cristante D.
Binding of σ-ligands to C57BL/6 mouse brain membranes: effects of monoamine oxidase
inhibitors and subcellular distribution studies suggest the existence of σ-receptor
subtypes.
J Pharmacol Exp Therapeutics.
1991;
257
141-148
- 29
Gobbi M, Moia M, Pirona L, Morizzoni P, Mennini T.
In vivo binding studies with two hypericum perforatum extracts - hyperforin, hypericin
and biapigenin - on 5-HT6, 5-HT7, GABA(A)/benzodiazepine, sigma, NPY-Y1/Y2 receptors
and dopamine trasporters.
Pharmacopsychiatry.
2001;
34
45-48
- 30 Leonard B E. The potential contribution of sigma receptors to antidepressant actions.
In: Antidepressants: New Pharmacological Strategies. Ed. Skolnick P Humana Press Totowa; 1997: pp 159-172
- 31 Baulieu E E, Robel P, Schumacher M. Neurosteroids: from definition and biochemistry
to physiopathologic function. In: Baulieu EE, Robel P, Schumacher M. editors
Neurosteroids: a new regulatory function in the nervous system. Hamana Press Totowa, New Jersey; 1999: pp. 1-25
- 32
Mellon H, Griffin L D.
Neurosteroids: biochemistry and clinical significance. Trends in Endcrinol.
Metab..
2002;
13
35-43
- 33 Klein M, Musacchio J M. Effets of cytochrome P-450 ligands on the binding of [3H]dextrometorphan
and sigma ligands to guinea-pig brain. In: Itzhak Y, ed
Sigma Receptors. Academic San Diego, CA; 1994: pp243-262
- 34
Maurice T, Urani A, Phan V -L, Romieu P.
The interaction between neuroactive steroids and the σ1 receptor function: behavioral
consequences and therapeutic opportunities.
Brain Res Rev.
2001;
37
116-132
- 35
Matsuno K, Kobayashi T, Tanaka M, Mita S.
σ1receptor subtype is involved in the relief of behabioral despair in the mouse forced
swimming test.
Eur J Pharmacol.
1996;
312
267-271
- 36
Tottori K, Miwa T, Uwahodo Y, Yamada S, Nakai M, Oshiro Y, Kikuchi T, Altar C A.
Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14
523.
Neuropharmacology.
2001;
41
976-988
- 37
Ukai M, Maeda H, Nanya Y, Kameyama T, Matsuno K.
Beneficial effects of acute and repeated administrations of σ receptor agonists on
behavioral despair in mice exposed to tail suspension.
Pharmacol Biochem Behav.
1998;
61
247-252
- 38
Urani A, Roman F J, Phan V L, Su T P, Maurice T.
The antidepressant-like effect induced by the sigma (1)-receptor agonists and neuroactive
steroids in mice submitted to the forced swimming test.
J Pharmacol Exp Ther.
2001;
298
1269-1279
- 39
Skuza G and Rogoz Z.
A potential antidepressant activity of SA4503, a selective sigma1 receptor agonist.
Behav Pharmacol.
2002;
13
537-543
- 40
Earley B, Burke M, Leonard B E, Gouret C J, Junien J L.
Evidence for an anti-amnesic effect of JO 1784 in the rat: a potent and selective
ligand for the sigma receptor.
Brain Res.
1991;
546
282-286
- 41
Matsuno K, Senda T, Kobayashi T, Okamoto K, Nakata K, Mita S.
SA4503, a novel cognitive enhancer, with sigma 1 receptor agonistic properties.
Behav Brain Res.
1997;
83
221-224
- 42
Tottori K, Miwa T, Uwahodo Y, Yamada S, Oshiro Y and Koga N.
Antidepressant effect of OPC-14 523 in the forced swimming test in mice.
Jpn J Pharmacol.
1997;
73
59P
- 43
Urani A, Romieu P, Portales-Casamar E, Roman F J, Maurice T.
The antidepressant-like effect induced by the sigma (1) receptor agonist igmesine
involves modulation of intracellular calcium mobilization.
Psychopharmacology.
2002;
163
26-35
- 44
Nestler E J, Barrot M, DiLeone R J, Eisch A J, Gold S J, and Monteggia L M.
Neurobiology of depression.
Neuron.
2002;
34
13-25
- 45
McEwen B S.
The neurobiology of stress: from serendipity to clinical relevance.
Brain Res.
2000;
886
172-189
- 46
Norrholm S and Ouimet C C.
Altered dendritic spine density in animal models of depression and in response to
antidepressant treatment.
Synapse.
2001;
42
151-163
- 47
Gombos Z, Spiler A, Cottrell G A, Racine R J, Mcintyre B W.
Mossy fiber sprouting induced by repeated electroconvulsive shock seizures.
Brain Res.
1999;
844
28-33
- 48
Takebayashi M, Hayashi T, Su T P.
Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors:
Implicastions for antidepressants.
J Pharmacol Exp Ther.
2002;
303
1227-1237
- 49
Reddy D S, Kaur G, Kulkarni S K.
Sigma (σ1) receptor mediated antidepressant-like effects of neurosteroids in the Porsolt
forced swim test.
NeuroReport.
1998;
9
3069-3073
- 50
Langa F, Codony X, Tovar V, Lavado A, Gimenez E, Cozar P, Cantero M, Dordal A, Hernandez E,
Perez R, Monroy X, Zamanillo D, Guitart X, Montolie L.
Generation and phenotypic analysis of sigma receptor type 1 (σ1) knockout mice.
Eur J Neurosci.
2003;
18
2188-2196
- 51
van Broekhoven F, Verkes R J.
Neurosteroids in depression: a review.
Psychopharmacology.
2003;
165
97-110
- 52 Pande A, Geneve J, Scherrer B. Igmesine, a novel sigma ligand, has antidepressant
properties. The 21rd Collegium Internationale Neuro-Psychopharmacologicum. 1998; abstract
(SM0505) Glasgow;
- 53
George M S, Guidotti A, Rubinow D, Pan B, Mikalauskas K, Post R M.
CSF neuroactive steroids in affective disorders:pregnenolone, progesterone, and DBI.
Biol Psychiatry.
1994;
35
775-780
- 54
Wang M, Seippel L, Purdy R H, Backstrom T.
Relationship between symptom severity and steroid variation in women with premenstrual
syndrome: study on serum pregnenolone, pregnenolone sulfate, 5α-pregnane-3,20-dione
and 3 α -hydroxy-5 α-pregnan-20-one.
J Clin Endocrinol Metab.
1996;
81
1076-1082
- 55
Takebayashi M, Kagaya A, Uchitomi Y, Kugaya A, Muraoka M, Yokota N, Horiguchi J.
Yamawaki S. Plasma dehydroepiandrosterone sulfate in major depression.
J Neural Transm.
1998;
105
537-542
- 56
Wolkowitz O M, Reus V I, Roberts E, Manfredi F, Chan T, Raum W J, Ormiston S, Johnson R,
Canick J, Brizendine L, Weingartner H.
Dehydroepiandrosterone (DHEA) treatment of depression.
Biol Psychiatry.
1997;
41
311-318
- 57
Wolkowitz O M, Reus V I, Keebler N, Nelson M, Friedland M, Brizendine L, Roberts E.
Double blind treatment of major depression with dehydroepiandrosterone.
Am J Psychiatry.
1999;
156
646-649
- 58
Bloch M, Schmidt P J, Danaoeau M A, Adams LF Rubinow D R.
Dehydroepiandrosterone treatment of midlife dysthymia.
Biol Psychiatry.
1999;
45
1531-1541
- 59
Ishiguro H, Ohtsuki T, Toru M, Itokawa M, Aoki J, Shibuya H, Kurumaji A, Okubo Y,
Iwawaki A, Ota K, Shimizu H, Hamaguchi H, Arinami T.
Association between polymorphisms in the type 1 sigma receptor gene and schizophrenia.
Neurosci lett.
1998;
257
45-48
- 60 Uchida N, Ujike H, Nakata K, Takaki M, Nomura A, Katsu T, Tanaka Y, Imamura T,
Sakai A, and Kuroda S. No association between the sigma receptor type1 gene and schizophrenia:
results of analysis and meta-analysis of case-control studies. BMC Psychiatry 2003:
3-13
- 61
Kawamura K, Ishiwata K, Tajima H, Ishii S, Matsuno K, Homma Y, Senda M.
In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors.
Nucl Med Biol.
2000;
27
255-261
- 62
Kawamura K, Ishiwata K, Shimada Y, Kimura Y, Kobayashi T, Matsuno K, Homma Y, Senda M.
Preclinical evaluation of [11C]SA4503: radiation dosimetry, in vivo selectivity and PET imaging of sigma1 receptors
in the cat brain.
Ann Nucl Med.
2000;
14
285-292
- 63
Ishii K, Ishiwata K, Kimura Y, Kawamura K, Oda K, Senda M.
Mapping of sigma1 receptors in living human brain.
Neuroimage.
2001;
6
S984
Tsung-Ping Su, Ph. D.
Cellular Pathobiology Unit/Triad Bldg.
IRP/CNBR/NIDA/NIH
5500 Nathan Shock Drive
Baltimore, MD 21224, USA
Phone: (410)-550-6568 ext 117
Fax: (410)-550-1153
Email: TSU@intra.nida.nih.gov