References
<A NAME="RD19704ST-1">1</A> For leading references to histrionicotoxin, see:
Stockman RA.
Sinclair A.
Arini LG.
Szeto P.
Hughes DL.
J. Org. Chem.
2004,
69:
1598
<A NAME="RD19704ST-2A">2a</A>
Chou T.
Kuramoto M.
Otani Y.
Shikano M.
Yazawa K.
Uemura D.
Tetrahedron Lett.
1996,
37:
3871
<A NAME="RD19704ST-2B">2b</A>
Carson W.
Kim G.
Hentemann MF.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4450
<A NAME="RD19704ST-2C">2c</A>
Carson MW.
Kim G.
Hentemann MF.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4453
<A NAME="RD19704ST-3A">3a</A>
Kuramoto M.
Tong C.
Yamada K.
Chiba T.
Hayashi Y.
Uemura D.
Tetrahedron Lett.
1996,
37:
3867
<A NAME="RD19704ST-3B">3b</A>
Trauner D.
Schwartz JB.
Danishefsky SJ.
Angew. Chem. Int. Ed.
1999,
38:
3542
<A NAME="RD19704ST-3C">3c</A>
Trauner D.
Danishefsky SJ.
Tetrahedron Lett.
1999,
40:
6513
<A NAME="RD19704ST-3D">3d</A>
Trauner D.
Churchill DG.
Danishefsky SJ.
Helv. Chim. Acta
2000,
83:
2344
<A NAME="RD19704ST-4">4</A> For very recent formal syntheses of both (±)-halichlorine and (±)-pinnaic acid,
and further references, see:
Matsumura Y.
Aoyagi S.
Kibayashi C.
Org. Lett.
2004,
6:
965
For varied approaches, see for example:
<A NAME="RD19704ST-5A">5a</A>
Willand N.
Beghyn T.
Nowogrocki G.
Gesquire J.-C.
Deprez B.
Tetrahedron Lett.
2004,
45:
1051
<A NAME="RD19704ST-5B">5b</A>
Canesi S.
Belmont P.
Bouchu D.
Rousset L.
Ciufolini MA.
Tetrahedron Lett.
2002,
43:
5193
<A NAME="RD19704ST-5C">5c</A>
Ciblat S.
Canet J.-L.
Troin Y.
Tetrahedron Lett.
2001,
42:
4815
For methods based on ring closing metathesis, see:
<A NAME="RD19704ST-6A">6a</A>
Wright DL.
Schulte JP.
Page MA.
Org. Lett.
2000,
2:
1847
<A NAME="RD19704ST-6B">6b</A>
Suga S.
Watanabe M.
Yoshida J.
J. Am. Chem. Soc.
2002,
124:
14824
<A NAME="RD19704ST-6C">6c</A>
Nieczypor P.
Mol JC.
Bespalova NB.
Bubnov YN.
Eur. J. Org. Chem.
2004,
812
<A NAME="RD19704ST-6D">6d</A>
Edwards AS.
Wybrow RAJ.
Johnstone C.
Adams H.
Harrity JPA.
Chem. Commun.
2002,
1542
<A NAME="RD19704ST-6E">6e</A>
Wybrow RAJ.
Stevenson NG.
Harrity JPA.
Synlett
2004,
140
<A NAME="RD19704ST-7">7</A>
Goldspink NJ.
Simpkins NS.
Beckmann M.
Synlett
1999,
1292
<A NAME="RD19704ST-8">8</A> Clive has also recognised the possibility of applying our chiral base reaction
to this problem, see:
Yu M.
Clive DLJ.
Yeh VSC.
Kang S.
Wang J.
Tetrahedron Lett.
2004,
45:
2879
<A NAME="RD19704ST-9">9</A>
In ref.8, Clive reports only a 69% ee was possible in the preparation of 7, whereas we have observed 90-95% ee in several runs. We are presently in communication
with Professor Clive in order to resolve this disparity.
<A NAME="RD19704ST-10">10</A>
Langer F.
Schwink L.
Devasagayaraj A.
Chavant P.-Y.
Knochel P.
J. Org. Chem.
1996,
61:
8229
For reviews, see:
<A NAME="RD19704ST-11A">11a</A>
Wipf P.
Jahn H.
Tetrahedron
1996,
52:
12853
<A NAME="RD19704ST-11B">11b</A>
Wipf P.
Xu W.
Smitrovich JH.
Lehmann R.
Venanzi LM.
Tetrahedron
1994,
50:
1935
<A NAME="RD19704ST-12">12</A>
It appears that the basic tertiary amine interferes with the organometallic chemistry;
and in the radical reactions we suspected 1,6-hydrogen atom abstraction from the N-CH2Ph group.
<A NAME="RD19704ST-13">13</A>
Analysis of allylic alcohol 10, in the form of its 4-nitroben-zoate ester revealed the stereochemistry shown. We
thank Dr A. J. Blake of this school for this result, full details of which will be
published later.
<A NAME="RD19704ST-14">14</A>
Data for ketone 16: [α]D
28 -6.2 (c 1.0 in CHCl3). IR (CDCl3): νmax = 2930 (s), 2858 (s), 1737 (s), 1588 (m), 1453 (m), 1362 (m), 1089 (s) cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.96 (9 H, s, t-Bu), 1.26-1.30 (1 H, m), 1.50-1.54 (3 H, m), 1.67-1.78 (2 H, m), 1.97-2.06 (4 H,
m), 2.14 (1 H, m, 2-H), 2.31 (1 H, m, 2-H), 2.61 (1 H, m, 7-H), 2.89 (1 H, dd, J = 9.9, 8.4 Hz, CH2OSi), 3.21 (1 H, d, J = 15.9 Hz, NCH2Ph), 3.33 (1 H, d, J = 15.9 Hz, NCH2Ph), 3.56 (1 H, dd, J = 9.9, 3.8 Hz, CH2OSi), 7.07-7.14 (3 H, m, Ar), 7.23-7.27 (2 H, m, Ar), 7.27-7.35 (4 H, m, Ar), 7.36-7.45
(6 H, m, Ar). 13C NMR (100 MHz, CDCl3): δ = 17.7 (CH2), 19.2 (C), 19.8 (CH2), 25.9 (CH2), 26.9 (CH3), 29.3 (CH2), 31.3 (CH2), 37.2 (CH2), 56.9 (CH2), 62.3 (CH), 67.6 (CH2), 71.6 (C), 126.3 (CH), 127.2 (CH), 127.5 (CH), 127.8 (CH), 129.5 (CH), 129.5 (CH),
133.7 (C), 133.9 (C), 135.5 (CH), 135.6 (CH), 142.0 (C), 220.0 (C=O). HRMS (APCI):
m/z calcd for C33H42NO2Si [M + H]: 512.2985; found: 512.2999.
<A NAME="RD19704ST-15">15</A>
The Claisen rearrangement gave a mixture of intermediates, assigned as 19/22 in a ca. 1:4 ratio. So far we have been able to isolate only the metathesis product
derived from the major component. Data for ester 24: [α]D
27 -4.2 (c 1.0 in CHCl3). IR (CDCl3): νmax = 2957 (s), 2930 (s), 2858 (s), 1726 (s), 1588 (w), 1427 (m) cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.96 (9 H, s, t-BuSi), 1.17 (3 H, t, J = 7.3 Hz, Me), 1.45-1.69 (5 H, m), 1.97 (1 H, br d, J = 13.0 Hz), 2.13 (1 H, dd, J = 14.9, 10.7 Hz, CH2CO2), 2.25 (1 H, dd, J = 17.2, 2.3 Hz, 4-H), 2.54 (1 H, d, J = 17.2 Hz, 4-H), 2.58-2.63 (2 H, m, 7-H and CH2CO2), 3.05 (1 H, m, 1-H), 3.07 (1 H, dd, J = 9.9, 7.6 Hz, CH2OSi), 3.30 (1 H, d, J = 17.4 Hz, NCH2Ph), 3.55 (1 H, dd, J = 9.9, 3.8 Hz, CH2OSi), 3.85 (1 H, d, J = 17.4 Hz, NCH2Ph), 4.05 (2 H, m, OCH2Me), 5.56 (1 H, br dd, J = 6.1, 1.9 Hz, 2-H), 5.71 (1 H, br dd, J = 6.1, 2.3 Hz, 3-H), 7.10 (1 H, m, Ar), 7.14-7.19 (4 H, m, Ar), 7.28-7.31 (4 H, m,
Ar), 7.36-7.40 (2 H, m, Ar), 7.42-7.45 (4 H, m, Ar). 13C NMR (125 MHz, CDCl3): δ = 14.2 (CH3), 19.2 (C), 20.2 (CH2), 27.0 (CH3), 29.9 (CH2), 33.1 (CH2), 35.7 (CH2), 37.6 (CH2), 49.8 (CH), 53.9 (CH2), 60.3 (CH2), 63.6 (CH), 68.1 (CH2), 68.7 (C), 125.9 (CH), 126.8 (CH), 127.6 (CH), 127.9 (CH), 129.5 (CH), 132.8 (CH),
133.8 (C), 133.9 (C), 135.5 (CH), 135.6 (CH), 143.2 (C), 173.4 (C=O). HRMS (APCI):
m/z calcd for C37H48NO3Si [M + H]: 582.3403; found: 582.3398.
<A NAME="RD19704ST-16">16</A>
Martin Castro AM.
Chem. Rev.
2004,
104:
2939
<A NAME="RD19704ST-17">17</A>
This assignment is based on gradient NOE enhancements seen between the methine at
C-1 of the cyclopentene (C*) and the methylene of the N-Bn group. By contrast no such
enhancement to the methylene of the CH2CO2Et substituent was seen.