Abstract
A study of transport and action of synthetic auxin analogues can help to identify
transporters and receptors of this plant hormone. Both aspects - transportability
and action on growth - were tested with 2-naphthoxyacetic acid (2-NOA) and compared
across several plant species. 2-NOA stimulates elongation effectively at low concentrations
in petioles of the gymnosperm Ginkgo biloba L., in hypocotyls or internodes of the dicot legumes, mung bean (Vigna mungo L.) and pea (Pisum sativum L.), in cotyledons of onion (Allium cepa L.) and in leaf bases of chive (Allium schoenoprasum L.), the latter two of the monocot order Asparagales. In contrast, elongation of
coleoptile segments of maize (Zea mays L.) is poorly responsive to 2-NOA. Significant auxin-like transport of 2-NOA was
observed in segments of mung bean hypocotyls, pea internodes, and chive leaf bases,
but not in segments of the grass coleoptiles. Thus, for the two assays, elongation
and polar transportability, the same difference in ligand specificity was observed
between the grass and all other species assayed. This finding supports the hypothesis
that a common protein mediates auxin efflux as well as auxin action on elongation.
Key words
Auxin transport - elongation growth - 2-naphthoxyacetic acid -
Allium
-
Pisum
-
Zea.
References
- 1 Åberg B..
Some new aspects of the growth regulating effects of phenoxy compounds. Klein, R. M., ed. Plant Growth Regulation. Ames, Iowa; Iowa State University Press
(1961): 219-230
- 2
Banister J., Whittaker V. P..
Pharmacological activity of the carbon analogue of acetylcholine.
Nature.
(1951);
167
605
- 3
Benjamins R., Quint A., Weijers D., Hooykaas P., Offringa R..
The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport.
Development.
(2001);
128
4057-4067
- 4
Christensen S. K., Dagenais N., Chory J., Weigel D..
Regulation of auxin response by the protein kinase PINOID.
Cell.
(2000);
100
469-478
- 5
Delbarre A., Muller P., Imhoff V., Guern J..
Comparison of mechanisms controlling uptake and accumulation of 2.4-dichlorophenoxy
acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured
tobacco cells.
Planta.
(1996);
198
532-541
- 6
Dharmasiri N., Dharmasiri S., Jones A. M., Estelle M..
Auxin action in a cell-free system.
Current Biology.
(2003);
13
1418-1422
- 7
Dharmasiri N., Estelle M..
Auxin signaling and regulated protein degradation.
Trends in Plant Science.
(2004);
9
302-308
- 8 Foster A. S., Gifford Jr E. M.. Comparative Morphology of Vascular Plants. 2nd
ed. San Francisco; Freeman (1974)
- 9
Fujita H., Syono K..
Genetic analysis of the effects of polar auxin transport inhibitors on root growth
in Arabidopsis thaliana.
.
Plant and Cell Physiology.
(1996);
37
1094-1101
- 10
Gunckel J. E., Thimann K. V..
Studies of development in long shoots and short shoots of Ginkgo biloba L.
American Journal of Botany.
(1949);
36
145-151
309-316
- 12 Hennig W.. Phylogenetische Systematik. Berlin; Parey (1982)
- 13
Hertel R..
The mechanism of auxin transport as a model for auxin action.
Zeitschrift für Pflanzenphysiologie.
(1983);
112
53-67
- 14
Hertel R., Leopold A. C..
Versuche zur Analyse des Auxintransports in der Koleoptile von Zea mays L.
Planta.
(1963);
59
535-562
- 15
Hertel R., Evans M. L., Leopold A. C., Sell H. M..
The specificity of the auxin transport system.
Planta.
(1969);
85
238-249
- 16
Herzog W..
Über die Verteilung der geotropischen Empfindlichkeit in negativen geotropen Pflanzenorganen.
Planta.
(1925);
1
116-145
- 17 Holmstedt B..
Structure-activity relationships of the organophosphorous anticholinesterase agents. Koelle, G. B., ed. Cholinesterases and Anticholinesterase Agents , Handbuch für experimentelle
Pharmakologie VI. Berlin; Springer (1963): 428-485
- 18
Jensen P. J., Hangarter R. P., Estelle M..
Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown
Arabidopsis.
.
Plant Physiology.
(1998);
116
455-462
- 19
Johnson C. F., Morris D. A..
Applicability of chemiosmotic polar diffusion theory to the transport of IAA in the
intact pea Pisum sativum L.
Planta.
(1989);
178
242-248
- 20
Jones A. M., Im K. H., Savka M. A., Wu M. J., DeWitt N. G., Shillito R., Binns A. N..
Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1.
Science.
(1998);
282
1114-1117
- 21 Kang B. G., Park W. J., Nam M. H., Hertel R..
Ethylene-induced increase of sensitivity to auxin in Ranunculus petioles and its implications regarding ethylene action on adaptation. Karssen, C. M., Van Loon, L. C., and Vreudenhil, D., eds. Progress in Plant Growth
Regulation. Dordrecht; Kluwer Academic Publishers (1992): 248-253
- 22
Katekar G. F., Geissler A. E..
Structure-activity differences between indoleacetic acid auxins on pea and wheat.
Phytochemistry.
(1983);
22
27-31
- 23
Kuzoff R. K., Gasser C. S..
Recent progress in reconstructing angiosperm phylogeny.
Trends in Plant Science.
(2000);
5
330-336
- 24
Leubner-Metzger G., Amrhein N..
Phenylalanine analogues: potent inhibitors of phenylalanine ammonia-lyase are weak
inhibitors of phenylalanine-tRNA synthetases.
Zeitschrift für Naturforschung.
(1994);
49 c
781-790
- 25
Müller-Hill B., Rickenberg H. V., Wallenfels K..
Specificity of the induction of the enzymes of the Lac operon in Escherichia coli.
.
Journal of Molecular Biology.
(1964);
10
303-318
- 26
Noh B., Murphy A. S., Spalding E. P..
Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development.
Plant Cell.
(2001);
13
2441-2454
- 27
Palme K., Gälweiler L..
PIN-pointing the molecular basis of auxin transport.
Current Opinion in Plant Biology.
(1999);
2
375-381
- 28
Park W. J., Schäfer A., Prinsen E., Van Onckelen H., Kang B. G., Hertel R..
Auxin-induced elongation in short maize coleoptile segments is supported by DIMBOA.
Planta.
(2001);
213
92-100
- 29
Poli D. B., Jacobs M., Cooke T. J..
Auxin regulation of axial growth in bryophyte sporophytes: Its potential significance
for the evolution of early land plants.
American Journal of Botany.
(2003);
90
1405-1415
- 30
Reinhardt D., Mandel T., Kuhlmeier C..
Auxin regulates the initiation and radial position of plant lateral organs.
Plant Cell.
(2000);
12
507-518
- 31
Schnepf E., Herth W., Morre D. J..
Elongation growth of setae of Pellia (Bryophyta): effects of auxin and inhibitors.
Zeitschrift für Pflanzenphysiologie.
(1979);
94
211-217
- 32
Schwuchow J., Michalke W., Hertel R..
An auxin transport inhibitor interferes with unicellular gravitropism in protonemata
of the moss Ceratodon purpureus.
.
Plant Biology.
(2001);
3
357-363
- 33
Stotz H. U., Hertel R..
Reevaluation of the role of auxin binding site II.
Journal of Plant Growth Regulation.
(1994);
13
79-85
- 34
Swarup R., Marchant A., Bennett M. J..
Auxin transport: providing a sense of direction during plant development.
Biochemical Society Transactions.
(2000);
28
481-485
- 35
Veen H..
Relationship between transport and metabolism of α-naphthaleneacetic acid, β-naphthaleneacetic
acid and α-decalylacetic acid in segments of Coleus.
.
Planta.
(1972);
103
35-44
- 36
Wilson K. J., McNamee M. G., Peticolas W. L..
The time dependent UV resonance Raman spectra conformation and biological activity
of acetylcholine analogues upon binding to acetylcholine binding proteins.
Journal of Biomolecular Structure and Dynamics.
(1991);
9
489-510
- 37
Wright M..
Reversal of polarity of IAA transport in the leaf sheath base of Echinochloa colonum.
.
Journal of Experimental Botany.
(1981);
32
159-169
- 38
Yamagami M., Haga K., Napier R. M., Iino M..
Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal
protoplasts.
Plant Physiology.
(2004);
134
735-747
- 39
Zhao H., Hertel R., Ishikawa H., Evans M. L..
Species differences in ligand specificity of auxin-controlled elongation and auxin
transport: comparing Zea and Vigna.
.
Planta.
(2002);
216
293-301
R. Hertel
Institut Biologie III
Albert-Ludwig-Universität
Schänzlestraße 1
79104 Freiburg
Germany
Email: rainer.hertel@biologie.uni-freiburg.de
Editor: G. Thiel