Plant Biol (Stuttg) 2005; 7(1): 23-32
DOI: 10.1055/s-2004-830462
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

ESTs from the Fibre-Bearing Stem Tissues of Flax (Linum usitatissimum L.): Expression Analyses of Sequences Related to Cell Wall Development

A. Day1 , 2 , M. Addi1 , W. Kim1 , H. David1 , F. Bert3 , P. Mesnage4 , C. Rolando5 , B. Chabbert2 , G. Neutelings1 , S. Hawkins1
  • 1Laboratoire de Physiologie des Parois Végétales UPRES EA 3568 USC-INRA, USTL, 59655 Villeneuve d'Ascq, France
  • 2Equipe Parois et Matériaux Fibreux, UMR FARE, BP 224, 51686 Reims cedex 2, France
  • 3Institut Technique du Lin, Paris, France
  • 4Institut Français Textile-Habilement, 59655 Villeneuve d'Ascq, France
  • 5Laboratoire de Chimie Organique et Macromoléculaire, UPRES SA CNRS 8009, USTL, 59655 Villeneuve d'Ascq, France
Further Information

Publication History

Received: July 14, 2004

Accepted: October 13, 2004

Publication Date:
21 January 2005 (online)

Abstract

In order to learn more about the diversity of genes expressed during flax fibre cell wall formation, expressed sequence tags (ESTs) were obtained from a cDNA library derived from the outer fibre-bearing tissues of flax (Linum usitatissimum) stems (cv Hermes) harvested at the mid-flowering stage. After elimination of vector and unreadable sequences, 927 ESTs were grouped into 67 clusters and 754 singletons. The flax ESTs have been submitted to the dbEST and GenBank databases with the accession numbers 25939634 - 25940560 (dbEST) and CV478070 - CV478996 (GenBank). Functional analysis allowed the grouping of ESTs into 13 functional categories and revealed that 62 % of ESTs were similar to known sequences, while 12.4 % of ESTs presented no similarity to any known sequences and 25.6 % of ESTs corresponded to proteins of unknown function. The most highly expressed transcripts belonged to four functional categories: protein maturation and metabolism (31 ESTs), signalling (22 ESTs), the cell wall (21 ESTs) and photosynthesis (19 ESTs). 4.4 % (41) of the total ESTs were potentially related to cell wall formation and maturation. The most highly expressed cell wall EST (15 ESTs) corresponded to a β-xylosidase gene - potentially involved in cell wall remodelling during growth and development. Other cell wall-related ESTs corresponded to cellulose synthase, xyloglucan endotranglucosylase/hydrolase (XTH), β-galactosidases, and peroxidases. The expression patterns of different cell wall-related ESTs were determined at different developmental stages in flax plants grown under different field conditions. The potential roles of gene products associated with cell wall related ESTs in fibre cell wall development is discussed.

References

  • 1 Awano T., Takabe K., Fujita M.. Xylan and lignin deposition on the secondary wall of Fagus crenata fibers. Morohoshi, A. K. N., ed. Molecular Breeding of Woody Plants. Amsterdam; Elsevier Science B. V. (2001): 137-142
  • 2 Baley C.. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase.  Composites Part A: Applied Science and Manufacturing. (2002);  3 939-948
  • 3 Bergander A., Salmen L.. Cell wall properties and their effects on the mechanical properties of fibers.  Journal of Material Sciences. (2002);  37 151-156
  • 4 Boerjan W., Ralph J., Baucher M.. Lignin biosynthesis.  Annual Review of Plant Biology. (2003);  54 519-546
  • 5 Carpita N. C., Gibeaut D. M.. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth.  The Plant Journal. (1993);  3 1-30
  • 6 Carpita N., Vergara C.. A recipe for cellulose.  Science. (1998);  279 672-673
  • 7 Carson D. L., Huckett B. I., Botha F. C.. Sugarcane ESTs differentially expressed in immature and maturing internodal tissue.  Plant Science. (2002);  162 289-300
  • 8 Channelière S., Rivière S., Scalliet G., Szecsi J., Jullien F., Dolle C., Vergne P., Dumas C., Bendahmane M., Hugueney P., Cock J. M.. Analysis of gene expression in rose petals using expressed sequence tags.  FEBS Letters. (2002);  515 35-38
  • 9 Day A., Dehorter B., Neutelings G., Czeszak X., Chabbert B., Belingheri L., David H.. Caffeoyl-coenzyme A 3-O-methyltransferase enzyme activity, protein and transcript accumulation in flax (Linum usitatissimum) stem during development.  Physiologia Plantarum. (2001);  113 275-284
  • 10 Fry S. C.. Cross-linking of matrix polymers in the growing cell wall of angiosperms.  Annual Review of Plant Physiology. (1986);  37 165-186
  • 11 Girault R., Bert F., Rihouey C., Jauneau A., Morvan C., Jarvis M.. Galactans and cellulose in flax fibres: putative contributions to the tensile strength.  International Journal of Biological Macromolecules. (1997);  21 179-188
  • 12 Girault R., His I., Andeme-Onzighi C., Driouich A., Morvan C.. Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell walls of flax fibres.  Planta. (2000);  211 256-264
  • 13 Goffner D., Campbell M., Campargue C., Clastre M., Borderies G., Boudet A., Boudet A. M.. Purification and characterization of cinnamoyl-coenzyme A: NADP oxidoreductase in Eucalyptus gunnii. .  Plant Physiology. (1994);  106 625-632
  • 14 Gorshkova T. A., Wyatt S. E., Salnikov V. V., Gibeaut D. M., Ibragimov M. R., Lozovaya V. V., Carpita N. C.. Cell-wall polysaccharides of developing flax plants.  Plant Physiology. (1996);  110 721-729
  • 15 Gorshkova T. A., Sal'nikov V. V., Chemikosova S. B., Ageeva M. V., Pavlencheva N. V., Van Dam J. E. G.. The snap point: a transition point in Linum usitatissimum bast fiber development.  Industrial Crops Products. (2003);  18 213-221
  • 16 Goujon T., El Amrani A., Lerouxel O., Aletti E., Lapierre C., Josealeau J.-P., Jouanin L.. AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development.  The Plant Journal. (2003);  33 677-690
  • 17 Hatfield R. D., Ralph J., Grabber J. H.. Cell wall cross-linking by ferulates and diferulates in grasses.  Journal of the Science of Food and Agricultural. (1999);  79 403-407
  • 18 Higuchi T.. Lignin biochemistry: biosynthesis and biodegradation.  Wood Science and Technology. (1990);  24 23-63
  • 19 Ji S.-J., Lu Y.-C., Feng J.-X., Wei G. W., Li J., Shi Y.-H., Fu Q., Liu D., Luo J.-G., Zhu Y.-H.. Isolation and analyses of genes preferentially expressed during early cotton fiber developments by subtractive PCR and cDNA array.  Nucleic Acids Research. (2003);  31 2534-2543
  • 20 McDougall G. J.. Cell-wall-associated peroxidases and lignification during growth of flax fibres.  Journal of Plant Physiology. (1991);  139 182-186
  • 21 McDougall G. J.. Changes in cell wall-associated peroxidases during the lignification of flax fibres.  Phytochemistry. (1992);  31 3385-3389
  • 22 McDougall G. J.. Accumulation of wall-associated peroxidases during wound-induced suberization of flax.  Journal of Plant Physiology. (1993);  142 651-656
  • 23 Minic Z., Rihouey C., Do C. T., Lerouge P., Jouanin L.. Purification and characterization of enzymes exhibiting β-D-xylosidase activities in stem tissues of Arabidopsis.  Plant Physiology. (2004);  135 867-878
  • 24 Minorsky P. V.. The wall becomes surmontable.  Plant Physiology. (2002);  128 345-353
  • 25 Morvan C., Abdul-Hafez A. M., Morvan O., Jauneau A., Demarty M.. Etude physico-chimique et biochimique de polysaccharides extraits de lin sous-roui.  Plant Physiology and Biochemistry. (1989);  27 451-459
  • 26 Morvan C., Andème-Onzighi C., Girault R., Himmelsbach D. S., Driouich A., Akin D. E.. Building flax fibres: more than one brick in the walls.  Plant Physiology and Biochemistry. (2003);  41 935-944
  • 27 Roland J. C., Mosiniak M., Roland D.. Dynamique du positionnement de la cellulose dans les parois des fibres textiles du lin (Linum usitatissimum).  Acta Botanica Gallica. (1995);  142 463-484
  • 28 Rose J. K. C., Braam J., Fry S. C., Nishitani K.. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature.  Plant Cell Physiology. (2002);  43 1421-1435
  • 29 Sambrook J., Fritsch E. F., Maniatis T.. Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor; Cold Spring Harbor Laboratory Press (1989)
  • 30 Sterkey F., Regan S., Karlsson J., Hertzberg M., Rohde A., Holmberg A., Amini B., Bhalerao R., Larsson M., Villarroel R., Van Montagu M., Sandberg G., Olsson O., Teeri T. T., Boerjan W., Gustafsson P., Uhlén M., Sundberg B., Lundberg J.. Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 13330-13335
  • 31 Tanaka K., Murata K., Yamazaki M., Onosato K., Miyao A., Hirochika H.. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall.  Plant Physiology. (2003);  133 73-83
  • 32 The Arabidopsis Genome Initiative. . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. .  Nature. (2000);  408 796-815
  • 33 Tokarski C., Day A., David H., Rolando C.. Differential proteomics of the fiber-bearing stem tissues in flax. Journées du Réseau Français des Parois, Reims, France, 29 - 30 May. (2002)
  • 34 Ujino-Ihara T., Yoshimura K., Ugawa Y., Yoshimaru H., Nagasaka K., Tsumura Y.. Expression analysis of ESTs derived from the inner bark of Cryptomeria japonica. .  Plant Molecular Biology. (2000);  43 451-457
  • 35 Van de velde K., Baetens E.. Thermal and mechanical properties of flax fibres as potential composite reinforcement.  Macromolecular Materials and Engineering. (2001);  286 342-349
  • 36 Van Peij N. N. M. E., Brinkmann J., Vrsanskà M., Visser J., de Graaff L. H.. β-xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger, but not for induction of the xylanolytic enzyme spectrum.  European Journal of Biochemistry. (1997);  245 164-173
  • 37 Vissenberg K., Martinez-Vilchez I. M., Verbelen J.-P., Miller J. G., Fry S. C.. In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots.  Plant Cell. (2003);  12 1229-1238
  • 38 Zhang L., Ma X.-L., Zhang Q., Ma C.-L., Wang P.-P., Sun Y.-F., Zhao Y.-X., Zhang H.. Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library.  Gene. (2001);  267 193-200
  • 39 Zhong R. Q., Burk D. H., Ye Z. H.. Fibers, a model for studying cell differentiation, cell elongation and cell wall biosynthesis.  Plant Physiology. (2001);  126 477-479
  • 40 Zhong R., Morrison III., W. H., Freshour G. D., Hahn M. G., Ye Z.-H.. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis.  Plant Physiology. (2003);  132 786-795
  • 41 Zhu Y.-Q., Xu K.-X., Luo B., Wang J.-W., Chen X.-Y.. An ATP-binding cassette transporter GhWBC1 from elongating cotton fibers.  Plant Physiology. (2003);  133 580-588

S. Hawkins

Laboratoire de Physiologie des Parois Végétales UPRES EA 3568 USC-INRA
Université des Sciences et Technologies de Lille

59655 Villeneuve d'Ascq

France

Email: simon.hawkins@univ-lille1.fr

Editor: M. Hawkesford

    >