Zusammenfassung
Multigewebeblöcke, so genannte tissue microarrays (TMA), sind eine neue Technik für
die molekulare Charakterisierung von Tumoren auf der Ebene der Proteine (Proteomics),
Zucker (Glycomics) und DNA mittels verschiedener In-situ-Techniken (Immunhistochemie,
FISH, tunel-Assay u. a.). Die Erstellung der TMAs erfolgt rein mechanisch. Aus konventionellen
Paraffinblöcken von verschiedenen klinikopathologisch charakterisierten Tumoren (sog.
Donorblöcke) werden mittels eines kommerziell erhältlichen Gerätes (sog. Arrayer)
Gewebezylinder entnommen und in einen neu zu erstellenden Paraffinblock (Rezipientblock
= TMA-Block) nach einem präzisen Schema eingebracht. Das Problem der intratumoralen
Heterogenität ist durch die Verwendung von 2 - 3 Zylindern pro Tumor zu vernachlässigen.
Vom TMA-Block können dann multiple Schnitte mit einem Mikrotom angefertigt werden,
die dann für die Analyse von pathogenetisch relevanten, prädiktiven und prognostischen
Faktoren zur Verfügung stehen. Die TMAs sind besonders geeignet im Rahmen der Evaluierung
von Parametern prospektiver Studien in Bezug auf das Therapieansprechen („translational
research“). Die Vorteile der Anwendung von TMAs in der gynäkologischen Tumorforschung
überwiegen deutlich deren Nachteile. TMAs stellen somit eine wertvolle neue Methode
für die klinische Forschung dar.
Abstract
The use of tissue microarrays (TMAs) is a new technique in molecular profiling of
tumors using immunohistochemistry as well as molecular hybridisation techniques. It
represents a mechanical technique which involves taking 0.6 to 2.0 mm tissue cores
from multiple (donor) blocks of well characterised tumors with subsequent precise
insertion (arraying) into empty (recipient) blocks - the TMA block. This block can
be essentially processed as a regular paraffin block with nearly the same advantages
and disadvantages. The problem of tumor heterogeneity is solved by including 2 - 3
cores from each tumor into the TMA block. Thus this technique offers significantly
faster and cheaper evaluation of a large number (up to several hundreds of samples
per TMA block) of tumors and provide an easy access to material for further studies
using stored TMA blocks. TMAs will provide a valuable new tool for translational research,
especially in the evaluation of predictive parameters in prospective multi-centre
studies.
Schlüsselwörter
Gewebe Mikroarray - Immunhistochemie - Molekularbiologie - Tumor - gynäkologische
Onkologie
Key words
Tissue microarray - in situ techniques - immunohistochemistry - molecular profiling
- molecular biology - tumor
Literatur
1
Al-Kushi A, Irving J, Hsu F, Dupuis B, Liu C L, van de Rijn M, Gilks C B.
Immunoprofile of cervical and endometrial adenocarcinomas using tissue microarray.
Virchows Arch.
2003;
44
271-277
2
Bartlett J, Mallon E, Cooke T.
The clinical evaluation of HER2 status: Which test to use?.
J Pathol.
2003;
199
411-417
3
Battifora H.
The multitumor (saussage) tissue block: Novel method for immunohistochemical antibody
testing.
Lab Invest.
1986;
55
244-248
4
Bova G S, Parmigiani G, Epstein J I, Wheeler T, Mucci N R, Rubin M A.
Web-based tissue microarray image data analysis: Initial validation testing through
prostate cancer Gleason grading.
Hum Pathol.
2001;
32
417-427
5
Bubendorf L, Nocito A, Moch H, Sauter G.
Tissue microarray (TMA) technology: Miniaturized pathology archives for high-throughput
in in situ studies.
J Pathol.
2001;
195
72-79
6
Camp R L, Charette L A, Rimm D L.
Validation of tissue microarray technology in breast carcinoma.
Lab Invest.
2000;
80
1943-1949
7
Chen Y, Miller C, Mosher R, Zaho X, Deeds J, Morrissey M, Bryant B, Yang D, Meyer R,
Cronin F, Gostout B S, Smith-McCune K, Schlegel R.
Identification of cervical cancer markers by cDNA and tissue microarrays.
Cancer Res.
2003;
63
1927-1935
8
Cheng Q, Lau W M, Tay S K, Chew S H, Ho T H, Hui K M.
Identification and characterisation of genes involved in the carcinogenesis of human
squamous cell cervical carcinoma.
Int J Cancer.
2002;
20
419-426
9
Emmert-Buck M R, Strausberg R L, Krizman D B, Bonaldo M F, Bonner R F, Bostwick D G,
Bromwn M R, Buetow K H, Chuaqui R F, Cole K A, Duray P H, Englert C R, Gillespie J W,
Greenhut S, Grouse L, Hillier L W, Katz K S, Klausner R D, Kuznetzov V, Lash A E,
Lennon G, Linehan W M, Liotta L A, Marra M A, Musnson P J, Omstein D K, Prabhu V V,
Prange C, Schuler G D, Soares M B, Tolstoshev C M, Vocke C D, Waterson R H.
Molecular profiling of clinical tumor specimens. Feasibility and applications.
Am J Pathol.
2000;
156
1109-1115
10
Gillett C E, Springall R J, Barnes D M, Hanby A M.
Multiple tissue core arrays in histopathology research: A validation study.
J Pathol.
2000;
192
549-553
11
Gulman C, O'Grady A.
Tissue microarrays: An overview.
Curr Diagn Pathol.
2003;
9
149-154
12
Hedvat C V, Hedge A, Changanti R SK, Chen B, Quin J, Filipa D A, Nimer S D, Teruya-Feldstein J.
Application of tissue microarray technology to the study of non-Hodgkin's and Hodgkin's
lymphoma.
Hum Pathol.
2002;
33
968-974
13
Hidalgo A, Pina P, Guerrero G, Lazos M, Salcedo M.
A simple method for the construction of small format tissue arrays.
J Clin Pathol.
2003;
56
144-146
14
Hoos A, Cordon-Cardo C.
Tissue microarray profiling of cancer specimens and cell lines: Opportunities and
limitations.
Lab Invest.
2001;
81
1331-1338
15
Hoos A, Urist M J, Stojadinovic A, Mastorides S, Dudas M E, Leung D H, Kuo D, Brennan M F,
Lewis J J, Cordon-Cardo C.
Validation of tissue microarrays for immunohistochemical profiling of cancer specimens
using the example of human fibroblastic tumors.
Am J Pathol.
2001;
158
1245-1251
16
Horn L C, Bilek K.
The usefulness of tumor registry in cervical cancer.
Zentralbl Gynakol.
2001;
123
311-314
17
Horn L C, Fischer U, Hänel C, Kuhn H, Raptis G, Bilek K.
p53 in surgically treated and pathologically staged cervical cancer: Correlation with
local tumor progression, but not with lymphatic spread.
Path Res Pract.
2001;
197
605-609
18
Kang J Y, Dolled-Filhart M, Ocal I T, Singh B, Lin C Y, Dockson R B, Rimm D L, Camp R L.
Tissue microarray analysis of hepatocytic growth factor/Met pathway components reveals
a role for MET, matriptase and hepatocyte growth factor inhibitor 1 in the progression
of node-negative breast cancer.
Cancer Res.
2003;
63
1101-1105
19
Kaulen H.
Für eine bessere Gesundheitsforschung: Biobanken.
DMW.
2003;
123
2629-2630
20
Kim M H, Seo S S, Song X S, Kang D H, Park I A, Kang K B, Lee H P.
Expression of cyclooxygenase-1 and - 2 associated with expression of VEGF in primary
cervical cancer and at metastatic lymph nodes.
Gynecol Oncol.
2003;
90
83-90
21
Kononen J, Bubendorf L, Kalloniemi A, Bärlund M, Schraml P, Leighton S, Torhorst J,
Mihatsch M J, Sauter G, Kalloniemi O P.
Tissue microarrays for high-throughput molecular profiling of tumor specimens.
Nature Med.
1998;
4
844-847
22
Moch H, Kononen J, Kallioniemi O P, Sauter G.
Tissue microarrays: What they will bring to molecular and anatomic pathology?.
Adv Anat Pathol.
2001;
8
14-20
23
Nitz G, Dierks C.
Nochmals: Forschung an und mit Körpersubstanzen - wann ist die Einwilligung des ehemaligen
Trägers erforderlich?.
MedR.
2002;
8
400-403
24
Nocito A, Kononen J, Kalloniemi O P, Sauter G.
Tissue microarrays (TMAs) for high-throughput pathology research.
Int J Cancer.
2001;
94
1-5
25
Ouban A, Muraca P, Yeatman T, Coppola D.
Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas.
Hum Pathol.
2003;
34
803-808
26
Reis-Filho J S, Simpson P T, Martins A, Preto A, Gartner F, Schnitt F C.
Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 neoplastic
human tissue samples using TARP-4 multi-tumor tissue microarray.
Virchows Arch.
2003;
443
122-132
27
Rubin M A, Dunn R, Strawderman M, Pienta K J.
Tissue microarray sampling strategy for prostate cancer biomarker analysis.
Am J Surg Pathol.
2002;
26
312-319
28
Schraml P, Bucher C, Bissig H, Nocito A, Haas P, Wilber K, Seelig S, Kononen J, Mihatsch M J,
Dirnhofer S, Sauter G.
Cyclin E overexpression and amplification in human tumors.
J Pathol.
2003;
200
375-382
29
Schraml P, Kononen J, Bubendorf L, Bissig H, Nocito A, Mihatsch M J, Kallioniemi O P,
Sauter G.
Tissue microarrays for gene amplification surveys in many different tumor types.
Clin Cancer Res.
1999;
5
1966-1975
30
Simon R, Mirlacher M, Sauter G.
Tissue microarrays in cancer diagnosis.
Expert Rev Mol Diagn.
2003;
3
421-430
31
Tolgay Ocal, Dolled-Filhart M, D'Aquila T G, Camp R L, Rimm D L.
Tissue-microarray-based studies of patients with lymph node negative breast carcinoma
show that met-expression is associated with worse outcome but is not correlated with
epidermal growth factor family receptors.
Cancer.
2003;
97
1841-1848
32
Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Köchli O R, Mross F, Dieterich H,
Moch H, Mihatsch M J, Kalloniemi O P, Sauter G.
Tissue microarrays for rapid linking of molecular changes to clinical endpoints.
Am J Pathol.
2001;
153
2249-2256
33
Van de Rijn M, Perou C M, Tibshirani R, Haas P, Kallionemi O P, Kononen J, Torhorst J,
Sauter G, Zuber M, Köchli O R, Mross, Dieterich H, Seitz R, Ross D, Botestein D, Brown P.
Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor
clinical outcome.
Am J Pathol.
2002;
161
1991-1996
34
Van den Rijn M, Gilks C B.
Applications of microarrays to histopathology.
Histopathology.
2004;
44
97-108
Prof. Dr. med. Lars-Christian Horn
Institut für Pathologie Universität Leipzig
Liebigstraße 26
04103 Leipzig
Email: hornl@medizin.uni-leipzig.de