Minim Invasive Neurosurg 2004; 47(6): 373-377
DOI: 10.1055/s-2004-830132
Original Article
© Georg Thieme Verlag Stuttgart · New York

Subthalamic Nucleus Stimulation for Advanced Parkinson's Disease: How to Find a Far Medial STN

V.  A.  Coenen1 , F.  Gielen2 , I.  Rohde1 , C.  Fromm3 , M.  Kronenbürger3 , S.  Dammert4 , V.  Rohde1
  • 1Department of Neurosurgery, University Hospital of the Aachen University (RWTH), Aachen, Germany
  • 2Medtronic Bakken Research Center, Maastricht, The Netherlands
  • 3Department of Neurology, University Hospital of the Aachen University (RWTH), Aachen, Germany
  • 4Department of Neuroradiology, University Hospital of the Aachen University (RWTH), Aachen, Germany
Further Information

Publication History

Publication Date:
26 January 2005 (online)

Abstract

In a patient with advanced Parkinson's disease, an anatomically deviant far medial subthalamic nucleus (STN) posed problems in the placement of DBS electrodes for chronic high frequency (HF) stimulation despite the use of multimodal targeting with 1) statistical atlas data, 2) T2-weighted (T2W) magnetic resonance imaging (MRI), 3) microelectrode recording, and 4) clinical testing with macro stimulation. Diagnostic T2W MRI suggested that the patient's STN was in a typical location and seemed to confirm the statistical atlas-based planning. Intraoperatively, cell activity recording (MER) with five parallel electrodes could not reveal any STN typical activity profile and electrical stimulation was not able to disclose a medial or lateral displacement of the electrodes. The operation was discontinued and postoperative stereotactic CT confirmed that the correct target area had been approached during the operation. Postoperative T2W MRI now disclosed a left STN which was 2 mm medial of the initial target and lead to a further medial target definition and finally to a successful DBS placement. In conclusion, finding a deep seated DBS target like the STN can be difficult in cases with an extremely deviant anatomy even if reiterative sophisticated multimodal planning is used. In the presented case we applied the integrated information from intraoperative MER, macrostimulation and postoperative imaging work-up and were able to complete DBS implantation successfully.

References

  • 1 Guiot G, Derome P, Arfel G. et al . Electrophysiological recordings in stereotaxic thalamotomy for parkinsonism.  Prog Neurol Surg. 1973;  5 189-221
  • 2 Rodriguez-Oroz M C, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J, DeLong M R, Obeso J A. The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics.  Brain. 2001;  124 1777-1790
  • 3 Hutchinson W D, Allan R J, Opitz H, Levy R, Dostrovsky J O, Lang A E, Lozano A M. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease.  Ann Neurol. 1998;  44 622-628
  • 4 Krack P, Limousin P, Benabid A L, Pollak P. Chronic stimulation of the subthalamic nucleus improves levodopa-induced dyskinesias in Parkinson's disease.  Lancet. 1997;  350 1676
  • 5 Schaltenbrand G, Wahren W. Atlas for stereotaxy of the human brain. Stuttgart: Thieme 1977
  • 6 Novak P, Novak V, Kangarlu A, Abduljalil A M, Chakeres D W, Robitaille P M. High resolution MRI of the brainstem at 8 T.  J Comput Assist Tomogr. 2001;  25 242-246
  • 7 Koeppen A H. The history of iron in the brain.  J Neurol Sci. 1995;  134 (Suppl) 1-9
  • 8 Smith R C, Lange R C, McCarthy S M. Chemical shift artefact: dependence on shape and orientation of the lipid water interface.  Radiology. 1991;  181 225-229
  • 9 Krauss J K, Grossman R G. Principles and techniques of movement disorders surgery. In: Krauss JK, Jankovic J, Grossman RG (eds). Surgery for Parkinson's disease and movement disorders. Philadelphia: Lippincott Williams & Wilkins 2001: pp 74-109
  • 10 Benabid A L, Pollak P, Koudsie A, Benezzouz A, Lebas J F. Electrical inhibition of the subthalamic nucleus for treatment of parkinson's disease. In: Krauss JK, Jankovic J, Grossman RG (eds). Surgery for Parkinson's disease and movement disorders. Philadelphia: Lippincott Williams & Wilkins 2001: pp 176-187
  • 11 Starr P A, Vitek J L, DeLong M, Bakay R AE. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus.  Neurosurgery. 1999;  44 303-314
  • 12 Starr P A, Christine C W, Theodosopoulus P V, Lindsey N, Byrd D, Mosley A, Marks W J. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations.  J Neurosurg. 2002;  97 370-387
  • 13 Bejjani B P, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet A M, Marsault C, Agid Y, Philippon J, Cornu P. Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance.  J Neurosurg. 2000;  92 615-625
  • 14 Zonenshayn M, Rezai A R, Mogilner A Y, Beric A, Sterio D, Kelly P J. Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting.  Neurosurgery. 2000;  47 282-294
  • 15 Cuny E, Guel D, Burbaud P, Gross C, Dousset V, Rougier A. Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance.  J Neurosurg. 2002;  97 591-597

Volker A. Coenen, M. D. 

Neurochirurgische Klinik · Klinikum der RWTH Aachen

Pauwelsstraße 30

52057 Aachen

Germany

Phone: +49-241-808-8480

Fax: +49-241-808-2420

Email: vacoenen@aol.com

    >