Fortschr Neurol Psychiatr 2005; 73(6): 317-326
DOI: 10.1055/s-2004-830101
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Alzheimer Demenz versus vaskuläre Demenz - Dichotomie oder Interaktion?

Alzheimer's Disease Versus Vascular Dementia - Dichotomy or Interaction?F.  Hentschel1 , T.  Supprian2 , L.  Frölich1
  • 1Abteilung Neuroradiologie und Abteilung für Gerontopsychiatrie des ZI (Direktor: Prof. Dr. Dr. F. Henn), Fakultät für klinische Medizin Mannheim der Universität Heidelberg,
  • 2Klinik für Psychiatrie und Psychotherapie des Universitäts-Klinikums, Homburg/Saar (Direktor: Prof. Dr. Peter Falkai)
Further Information

Publication History

Publication Date:
15 November 2004 (online)

Zusammenfassung

Die strikte Trennung der demenziellen Alterserkrankungen in die beiden häufigsten Ätiologien Alzheimer Demenz (AD) und vaskuläre Demenz (VD) folgt oder erfolgt nach pathophysiologischen Erkenntnissen und klinisch operationalen Kriterien. Sie ist aber auf der Grundlage neuerer Forschungsergebnisse in dieser kategorischen Form zu relativieren. Das Risiko, eine neurodegenerative Demenz im Alter zu entwickeln, ist polygenetisch determiniert und alterskorreliert, wobei die Ablagerung von β-Amyloid-Peptiden als wesentlicher Endpunkt in der Pathophysiologie der AD verstanden wird. Für die VD wurden insbesondere mikroangiopathische inkomplette Infarkte auf der Grundlage einer Fibrohyalinose als pathophysiologisch bedeutsam erkannt. Kontrovers diskutiert wird die Koinzidenz von genetisch determinierten Risikofaktoren für die AD oder die VD. Gut belegt sind Interaktionen von perivaskulären Mediatoren und den die Zirkulation beeinträchtigenden Faktoren für die beiden Formen der Altersdemenz. Aus diesen und weiteren neuropathologischen und therapeutischen Erkenntnissen wird die Hypothese abgeleitet, dass die jeweiligen spezifischen Ätiopathogenesen von AD und VD miteinander interagieren und die Phänomenologie der demenziellen Entwicklung von individuellen vaskulären Risikofaktoren modifiziert wird. Sowohl eine kategoriale Trennung von AD und VD als auch die Vorstellung der AD als eine Form der VD sind dagegen wenig überzeugend.

Abstract

Alzheimer's dementia (AD) and vascular dementia (VD) are the two major forms of dementia in the elderly. They have been separated categorically on the basis of pathophysiological findings and clinical operationalized criteria. However, this strict separation has to be reevaluated in the light of recent data. The risk to develop a neurodegenerative dementia in old age is determined by various susceptibility genes and correlated with aging. In AD, the current understanding of pathophysiology focuses on the amyloid cascade hypothesis as the major endpoint of the complex cellular pathology. In VD, incomplete microangiopathic infarcts due to fibrohyalinosis are regarded as the major pathophysiological event. A controversial discussion exists about the coincidence or interaction of genetically determined risk factors of AD and/or VD. Further interactions between AD and VD exist with regard to perivascular mediators and those factors which impair cerebral blood flow. Based on these and other recent neuropathological and therapeutic findings the hypothesis is proposed that the two specific etiopathologies of AD and VD interact to precipitate clinical dementia in the individual and that the individual phenomenology of these dementias is modified by vascular risk factors. Neither, a categorical separation of AD and VD nor the recent idea to regard AD as a distinct form of vascular dementia, do appear convincing.

Literatur

  • 1 MacKhann G, Drachmann D, Folstein M. et al . Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of departement of health and human service task force on Alzheimer's disease.  Neurology. 1984;  34 939-944
  • 2 Roman G C, Tatemichi T K, Erkinjuntti T. et mult al . Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop.  Neurology. 1993;  43 250-260
  • 3 Zekry D, Duyckaerts C, Belmin J. et al . Alzheimer's disease and brain infarcts in the elderly. Agreement with neuropathology.  J Neurol. 2002;  249 1529-1534
  • 4 Hentschel F, Damian M, Kreis M, Krumm B. Auswirkungen der erweiterten klinischen Diagnostik auf das Diagnosespektrum einer Gedächtnisambulanz.  Gerontologie und Geriatrie. 2004;  37 145-154
  • 5 Bigler E D, Kerr B, Victoroff J. et al . White matter lesions, quantitative magnetic resonance imaging, and dementia.  Alzheimer Dis Assoc Disord. 2002;  16 161-170
  • 6 Wallin A. The overlap between Alzheimer's disease and vascular dementia: The role of white matter changes.  Dement Geriat Cogn Disord. 1998;  9 30-35
  • 7 Hentschel F, Kölsch H, Heun R. Molekulargenetische Untersuchungen bei Patienten mit klinisch diagnostizierter subkortikaler vaskulärer Demenz. DFG-Antrag 2003
  • 8 Strittmatter W J, Saunders A M, Schmechel D. et al . Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.  Proc Natl Acad Sci USA. 1993;  90 1977-1981
  • 9 Panza F, D'Introno A, Colacicco A M. et al . Vascular risk and genetics of sporadic late-onset Alzheimer's disease .  J Neural Transm. 2004;  111 69-89
  • 10 Huang H M, Kuo Y M, On H Cl. Apolipoprotein E polymorphism in various dementias in Taiwan Chinese population.  J Neural Transm. 2002;  109 1415-1421
  • 11 McIlroy S P, Dynan K B, Lawson J T. Moderately elevated plasma homocystein, methylenetetrahydrofolate reductasegenotype, and risk for stroke, vaskular dementia, and Alzheimer disease in Northern Ireland.  Stroke. 2002;  33 2351
  • 12 Bronge L, Fernaeus S E, Blomberg M. et al . White matter lesions in Alzheimer patients are influenced by Apolipoprotein E genotype.  Dement Geriat Cogn Disord. 1999;  10 89-96
  • 13 Leys D, Pasquir F, Parnetti L. Epidemiology of vascular dementia.  Haemostasis. 1998;  28 134-150
  • 14 Frank A, Díez-Tejedor E, Bullido M J. et al . ApoE genotype in cerebrovascular disease and vascular dementia.  J Neurol Sci. 2002;  203 - 204 173-176
  • 15 Traykov L, Rigaud A S, Baudic S. et al . Apolipoprotein ε 4 allele frequency in demented and cognitively impaired patients with and without cerebrovascular disease.  J Neurol Sci. 2002;  203 - 204 177-181
  • 16 Söderberg M, Edlund C, Kristensson K. Lipid composition of different regions of the human brain during aging.  J Neurochem. 1990;  54 415-423
  • 17 Svennerholm L, Boström K, Helander C G. et al . Membrane lipids in the aging human brain.  J Neurochem. 1991;  56 2051-2059
  • 18 Svennerholm L, Boström K, Jungbjer B. et al . Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years.  J Neurochem. 1994;  63 1.802-1.811
  • 19 Söderberg M, Edlung C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease.  Lipids. 1991;  26 412-425
  • 20 Zhang Y, Appelkvist E L, Kristensson K. et al . The lipid composition of different regions of rat brain during development and aging.  Neurobiol Aging. 1996;  17 869-875
  • 21 Mason R P, Shoemaker W J, Shajenko L. et al . Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol.  Neurobiol Aging. 1992;  13 413-419
  • 22 Terracina L, Brunetti M, Avellini L. et al . Arachidonic and palmatic acid utilization in aged rat brain areas.  Mol Cell Biochem. 1992;  115 35-42
  • 23 Igbavboa U, Avdulow A, Schröder F, Wood W G. Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice.  J Neurochem. 1996;  66 1717-1725
  • 24 Cullis P R, Hope M J. Physical properties und functional roles of lipids in membranes. In: Vance DE, Vance J (eds.). Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, New York 1991: 1-40
  • 25 Vedie B, Jeunemaitre X, Megnien J L. et al . A new DNA polymorphism in the 5′ untranslated region of the human SREBP-1a is related to development of atherosclerosis in high cardiovascular risk population.  Atherosclerosis. 2001;  154 589-597
  • 26 Klein J. Membrane breakdown in acute and chronic neurodegeneration. Focus on choline containing phospholipids.  J Neural Transm. 2000;  107 1027-1063
  • 27 Mulder M, Ravid R, Swaab D F. et al . Reduced levels of cholesterol, phospholipids, and fatty acids in cerebral spinal fluid of Alzheimer disease patients are not related to apolipoprotein E 4.  Alzheimer Dis Ass Disord. 1998;  12 198-203
  • 28 Lütjohann D, Breuer O, Ahlborg G. et al . Cholesterol homeostasis in human brain: Evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation.  Proc Natl Acad Sci USA. 1996;  93 9799-804
  • 29 Mori E, Ishii K, Hashimoto M. et al . Role of functional brain imaging in the evaluation of vascular dementia.  Alzheimer Disease and Associated Disorders. 1999;  13 S91-S101
  • 30 Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer`s disease.  Neurobiol Aging. 2003;  25 5-18
  • 31 Braak H, DelTredici K. Poor and protracted myelination as a contributory factor to neurodegenerative disorders.  Neurobiol Aging. 2003;  25 19-23
  • 32 Kojro E, Gimpl G, Lammich S. et al . Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM.  Proc Natl Acad Sci USA. 2002;  98 5815-5820
  • 33 Fassbender K, Simons M, Bergmann C. et al . Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo.  Proc Natl Acad Sci USA. 2001;  98 5856-5861
  • 34 Wolozin B, Kellman W, Ruosseau P. et al . Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase in-hibitors.  Arch Neurol. 2000;  57 1439-1443
  • 35 Simons K, Ikonen E. How cells handle cholesterol.  Science. 2000;  290 1721-1726
  • 36 Papassotiropoulos A, Lütjohann D, Bagli M. et al . 24S-Hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia.  J Psychiatr Res. 2002;  36 27-32
  • 37 Panzenboeck U, Balazs Z, Sovic A. et al . ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells.  J Biol Chem. 2002;  277 42 781-42 789
  • 38 Hatanaka Y, Kamino K, Fukuo K. et al . Low density lipoprotein receptor-related protein gene polymorphisms and risk for late-onset Alzheimer's disease in a Japanese population.  Clin Genet. 2000;  58 319-323
  • 39 Kang D E, Pietrzik C U, Baum L. et al . Modulation of amyloid β-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway.  J Clin Invest. 2000;  106 1159-1166
  • 40 Erecinska M, Silver I A. ATP and brain function.  J Cereb Blood Flow Metab. 1989;  9 2-19
  • 41 Buttgereit F, Brand M D. A hierarchy of ATP-consuming processes in mammalian cells.  Biochem J. 1995;  312 163-167
  • 42 Davies R E, Miller S, Herrnstadt C. et al . Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease.  Proc Natl Acad Sci USA. 1997;  94 4526-4531
  • 43 Dyrks T, Dyrks E, Hartmann T. et al . Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metalcatalyzed oxidation.  J Biol Chem. 1992;  67 18 210-18 217
  • 44 Gabuzda D, Busciglio J, Chen L B. et al . Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative.  J Biol Chem. 1994;  269 13 623-13 628
  • 45 Frölich L, Blum-Degen D, Bernstein H G. et al . Insulin and insulin receptors in the brain in aging and in sporadic Alzheimer's disease.  J Neural Transm. 1998;  105 423-438
  • 46 Frölich L, Blum-Degen D, Riederer P, Hoyer S. A disturbance of the neuronal insulin receptor signal transduction in sporadic Alzheimer's disease.  Ann NY Acad Sci. 1999;  893 290-294
  • 47 Gasparini L, Gouvas G K, Wang R. et al . Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneural β-amyloid and requires nitrogen-activated protein kinase signalicy.  J Neurosci. 2000;  21 2561-2570
  • 48 Evans D, Aberle J, Wendt D. et al . A polymorphism, L162V, in the peroxisome proliferator-activated receptor α (PPARα) gene is associated with lower body mass index in patients with non-insulin-dependent diabetes mellitus.  J Mol Med. 2001;  79 198-204
  • 49 Hara M, Wang X, Paz V P. et al . Identification of three missense mutations in the peroxisome proliferator-activated receptor alpha gene in Japanese subjects with maturity-onset diabetes of the young.  J Hum Genet. 2001;  46 285-288
  • 50 Flavell D M, Jamshidi Y, Hawe E. et al . Peroxisome proliferator-activated receptor alpha gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease.  Circulation. 2002;  105 1440-1445
  • 51 Combs C K, Johnson D E, Karlo J C. et al . Inflammatory mechanisms in Alzheimer's disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists.  J Neurosci. 2000;  20 558-567
  • 52 Schmidt R, Schmidt H, Curb J D. et al . Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study.  Ann Neurol. 2002;  52 168-174
  • 53 Grimaldi L ME, Casadei V M, Ferri C. et al . Association of early-onset Alzheimer's disease with an interleukin-1α gene polymorphism.  Ann Neurol. 2000;  47 361-368
  • 54 Kölsch H, Ptok U, Bagli M. et al . Gene polymorphisms of interleukin-1α influence the course of Alzheimer's disease.  Ann Neurol. 2001;  49 818-819
  • 55 Rogers J. An IL-1α susceptibility polymorphism in Alzheimer's disease.  Neurology. 2000;  55 464-465
  • 56 Zaremba J, Losy J. sPECAM-1 in serum and CSF of acute ischaemic stroke patients.  Acta Neurol Scand. 2002;  106 292-298
  • 57 Cheng C Y, Hong C J, Liu H C. et al . Study of the association between Alzheimer's disease and angiotensin-converting enzyme gene polymorphism using DNA from lymphocytes.  Eur Neurol. 2002;  47 26-29
  • 58 Myllykangas L, Polvikoski T, Sulkava R. et al . Cardiovascular risk factors and Alzheimer's disease: a genetic association study in a population aged 85 or over.  Neurosci Lett. 2000;  292 195-198
  • 59 Losito A, Kalidas K, Santoni S. et al . Polymorphism of renin-angiotensin system genes in dialysis patients-association with cerebrovascular disease.  Nephrol Dial Transplant. 2002;  17 2184-2188
  • 60 Vasku A, Soucek M, Tschoplova S, Stejskalova A. An association of BMI with A (-6) G, M235T and T174M polymorphisms in angiotensinogen gene in essential hypertension.  J Hum Hypertens. 2002;  16 427-430
  • 61 Szolnoki Z, Somogyvari F, Kondacs A. et al . Evaluation of the modifying effects of unfavourable genotypes on classical clinical risk factors for ischemic stroke.  J Neurol Neurosurg Psychiatry. 2003;  74 1615-1620
  • 62 Reif A, Schneider M F, Kamolz S, Pfuhlmann B. Homocysteinemia in psychiatric disorders: association with dementia and depression, but not schizophrenia in female patients.  J Neural Transm. 2003;  110 1401-1411
  • 63 Kessler H, Bleich S, Falkai P, Supprian T. Homozystein und Demenzerkrankungen.  Fortschr Neurol Psychiat. 2003;  71 150-156
  • 64 Kim N K, Choi B O, Jung W S. et al . Hyperhomocysteinemia as an independent risk factor for silent brain infarction.  J Neurol. 2003;  61 1595-1599
  • 65 Iadecola C, Gorelick P B. Converging pathogenic mechanisms in vascular and neurodegenerative dementia.  Stroke. 2003;  34 335-337
  • 66 Honig L S, Tang M X, Albert S. et al . Stroke and the risk of Alzheimer disease.  Arch Neurol. 2003;  60 1707-1712
  • 67 Ball M J. White matter lesions, dementia, and ischemic axonopathy (letter).  Alzheimer Dis Assoc Disord. 2003;  17 55
  • 68 Jellinger K, Attems J. Incidence of cerebrovascular lesions in Alzheimer's disease: a postmortem study.  Acta Neuropathol. 2003;  105 14-17
  • 69 Hentschel F, Kreis M, Damian M, Krumm B. Mikroangiopathische Läsionen in der weißen Hirnsubstanz: Quantifizierung und Korrelation mit psychologischen Testergebnissen.  Nervenarzt. 2003;  74 55-61
  • 70 Snowdon D A, Greiner L H, Mortimer J A. Brain infarction and the clinical expression of Alzheimer disease.  JAMA. 1997;  277 813-817
  • 71 Mungas D, Reed B R, Ellis W G, Jagust W J. The effects of age on rate of progression of Alzheimer disease and dementia with associated cerebrovascular disease.  Archiv of Neurology. 2001;  58 1243-1247
  • 72 Crystal H, Dickson D. Cerebral infarcts in patients with autopsy proven Alzheimer's disease (abstract).  Neurobiol Aging. 2002;  23 (Suppl1) 207
  • 73 Jernigan T L, Fennema-Notestine C. White matter mapping is needed.  Neurobiol Aging. 2003;  25 37-39
  • 74 Wardlaw J M, Sandercock P AG, Dennis M S, Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leucoaraiosis, and dementia?.  Stroke. 2003;  34 806-812
  • 75 Corey-Bloom J, Thal L J, Galasko D. et al . Diagnosis and evaluation of dementia.  J Neurol. 1995;  45 211-218
  • 76 Hentschel F, Kreis M, Damian M. et al . Evaluation des Beitrages der radiologischen bildgebenden Diagnostik bei demenziellen Erkrankungen - ein Vergleich mit der psychologischen Diagnostik.  Fortschr Röntgenstr. 2003b;  175 1335-1343
  • 77 Fazekas F, Schmidt R, Scheltens P. Pathophysiologic mechanisms in the development of age-related white matter changes of the brain.  Dementia. 1988;  9 (Suppl 1) 2-5
  • 78 Hirono N, Yasuda M, Tanimukai S. et al . Effects of the Apolipoprotein E4 allele on white matter hyperintensities in dementia.  Stroke. 2000;  31 1263-1268
  • 79 Bronge L, Wahlund L O. Prognostic significance of white matter changes in a memory clinic population.  Psych Res Neuroimaging. 2003;  122 199-206
  • 80 Schmidt R, Roob G, Kapeller P. et al . Longitudinal changes of white matter abnormalities.  Neurobiol Ageing. 2000;  21 19-26
  • 81 Scheltens P, Barkhof F, Valk J. et al . White matter lesions on magnetic resonance imaging in clinically diagnosed Alzheimer's disease.  Brain. 1992;  115 735-748
  • 82 Schmidtke K, Hüll M. Neuropsychological differentiation of small vessel disease, Alzheimer's disease and mixed dementia.  J Neurol Sci. 2002;  203 - 204 17-22
  • 83 Barber R, Scheltens P, Gholkar A. et al . White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer's disease, vascular dementia, and normal aging.  J Neurol Neurosurg Psychiatry. 2002;  67 66-72
  • 84 Wallin A, Sjögren M, Edman A. et al . Symptoms, vascular risk factors and blood-brain barrier function in relation to CT white-matter changes in dementia.  Eur Neurol. 2002;  44 229-235
  • 85 Hargrave R, Geck L C, Reed B, Mungas D. Affective behavioural disturbances in Alzheimer's disease and ischemic vascular disease.  J Neurol Neurosurg Psychiat. 2000;  68 41-46
  • 86 Marti-Fabregas J, Valencia C, Lopez-Contreras J. et al . Blood pressure variability in Biswanger's disease and isolated lacunar infarction.  Cerebrovascular Diseases. 2001;  11 230-234
  • 87 Honig L S, Tang M X, Albert S. et al . Stroke and the risk of Alzheimer disease.  Arch Neurol. 2003;  60 1707-1712
  • 88 Schuff N, Capizzano A A, Du A T. et al . Different pattern of N-acetylaspartate loss in subcortical ischemic vascular dementia and AD.  J Neurol. 2003;  61 358-364
  • 89 Burggren A C, Small G W, Sabb F W, Bookheimer S Y. Specifity of brain activation patterns in people at genetic risk for Alzheimer disease.  Am J Geriatr Psychiatry. 2002;  10 44-51
  • 90 DeCarli C, Grady C L, Clark C M. et al . Comparison of positron emission tomography, cognition, and brain volume in Alzheimer's disease with and without severe abnormalities of white matter.  J Neurol Neurosurg Psychiatry. 1996;  60 158-167
  • 91 Tohgi H, Yonezawa H, Takahashi S. et al . Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer's type and vascular dementia with deep white matter changes.  Neuroradiology. 1998;  40 131-137
  • 92 Damian M, Kreis M, Krumm B. et al . Diskriminante Validität neuropsychologischer Verfahren in der Demenzdiagnostik.  Z Neuropsychol. 2003;  14 271-282
  • 93 Looi J CL, Sachdev P S. Differentiation of vascular dementia from AD on neuropsychological tests.  Neurology. 1999;  53 670-678
  • 94 Cannata A P, Alberoni M, Franceschi M. Frontal impairment in subcortical ischemic vascular dementia in comparison to Alzheimer's disease.  Dement Geriat Cogn Disord. 2002;  13 101-111
  • 95 Snowden J S. Neuropsychological evaluation and the diagnosis and differentialdiagnosis of dementia.  Reviews in Clinical Gerontology. 1999;  9 65-75
  • 96 Pasquir F. Early diagnosis of dementia: neuropsychology.  Neurology. 1999;  246 6-15
  • 97 Damian M, Kreis M, Krumm B, Hentschel F. Optimized neuropsychological procedures for different levels of dementia diagnostics. J Neurol Sci (in press)
  • 98 Barr A, Benedict R, Tune L, Brandt J. Neuropsychological differentiation of Alzheimer's disease from vascular dementia.  Int J Geriatr Psychiatry. 1992;  7 621-627
  • 99 Kertesz A. Neuropsychological deficits in vascular dementia vs. Alzheimer's disease. Frontal lobe deficits prominent in vascular dementia.  Arch Neurol. 1994;  51 1226-1231
  • 100 Mendez M F, Chertier M M, Perryman K M. Differences between Alzheimer's disease and vascular dementia on information processing measures.  Brain and Cognition. 1997;  34 301-310
  • 101 Oswald W D, Fleischmann U M. Das Nürnberger Altersinventar (NAI). Testzentrale Göttingen 1995
  • 102 Reitan R M, Wolfson D. Category test and trail making test as measures of frontal lobe functions.  Clinical Neuropsychologist. 1995;  0 50-56
  • 103 Villardita C. Alzheimer's disease compared with cerebrovascular dementia: neuropsychological similarities and differences.  Acta Neurol Scand. 1993;  87 299-308
  • 104 Reischies F M. Demenzen. In: Karnath HO, Their P (Hrsg.). Neuropsychologie. Heidelberg, Springer 2003: 727-736
  • 105 Bowler J V. The concept of vascular cognitive impairment.  J Neurol Sci. 2002;  203 - 204 11-15
  • 106 Amenta F, DiTullio M A, Tomassoni D. The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinical and clinical studies.  Clin Exp Hypertens. 2002;  24 697-713
  • 107 Grantham C, Geerts H. The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease.  J Neurol Sci. 2002;  203 - 204 131-136
  • 108 Erkinjuntti T, Kurz A, Gauthier S. et al . Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial.  Lancet. 2002;  359 1283-1290
  • 109 Frölich L, Klinger T, Berger F M. Treatment with donepezil in Alzheimer patients with and without cerebrovascular disease.  J Neurol Sci. 2003;  203 - 204 137-139
  • 110 Moretti R, Torre P, Antonelle R M. et al . Rivastigmine in subcortical vascular dementia: “an open 22-month study”.  J Neurol Sci. 2002;  203 - 204 141-146
  • 111 Orgogozo J M, Rigaud A S, Stöffler A. Efficacy and safety of memantine in patients with mild to moderate vascular dementia.  Stroke. 2002;  33 1834-1839
  • 112 Wilcock G, Möbius H J, Stöffler A. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500).  Int Clin Psychopharmacol. 2002;  17 297-305
  • 113 Englund E. Neuropathology of white matter lesions in vascular cognitive impairment.  Cerebrovascular Diseases. 2002;  13 (Suppl 2) 11-15
  • 114 Hachinski V. Vascular behavioral and cognitive disorders (Editorial).  Stroke. 2003;  34 2775
  • 115 DelaTorre J C. Alzheimer disease as a vascular disorder.  Stroke. 2002;  33 1152-1162
  • 116 Royall D R. Alzheimer disease as a vascular disorder: nosological evidence.  Stroke. 2002;  33 2147
  • 117 DeCarli C. The role of cerebrovascular disease in dementia.  The Neurologist. 2003;  9 123-136

Prof. Dr. F. Hentschel

Leiter der Abteilung Neuroradiologie, ZI · Fakultät für klinische Medizin Mannheim der Universität Heidelberg

68159 Mannheim

Email: hentsche@zi-mannheim.de

    >