Abstract
Treatment of various types of aldehydes and ketones with 1,3-propanedithiol in the
presence of a catalytic amount of lithium tetrafluoroborate at 25 °C under solvent-free
conditions followed by direct purification by distillation of the resulting mixture
affords the corresponding 1,3-dithianes in good to excellent yields. Chemoselective
protection of keto aldehydes is also successfully achieved over the catalyst. The
catalyst can be recovered and reused.
Key words
chemoselectivity - 1,3-dithiane - Lewis acids - lithium tetrafluoroborate - protecting
groups
References
For reviews, see:
<A NAME="RU08704ST-1A">1a </A>
Loewenthal HJE. In
Protective Groups in Organic Chemistry
McOmie JFW.
Plenum;
London:
1973.
p.334-337
<A NAME="RU08704ST-1B">1b </A>
Kocienski PJ. In
Protecting Groups
Thieme;
New York:
1994.
p.171-178
<A NAME="RU08704ST-1C">1c </A>
Greene TW.
Wuts PGM. In Protective Groups in Organic Synthesis
3rd ed.:
Wiley;
New York:
1999.
p.333-344
For reviews, see:
<A NAME="RU08704ST-2A">2a </A>
Krief A. In Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pattenden G.
Pergamon;
Oxford:
1991.
p.85-191
<A NAME="RU08704ST-2B">2b </A>
Yus M.
Nájera C.
Foubelo F.
Tetrahedron
2003,
59:
6147
<A NAME="RU08704ST-3">3 </A> For a review, see:
Pettit GR.
van Tamelen EE.
Org. React.
1962,
12:
356
<A NAME="RU08704ST-4">4 </A> For other synthetic applications, see:
Luh T.-Y.
J. Organomet. Chem.
2002,
653:
209 ; and references cited therein
<A NAME="RU08704ST-5">5 </A> For a recent leading reference, see:
Kobayashi S.
Iimura S.
Manabe K.
Chem. Lett.
2002,
10
For recent leading references, see:
<A NAME="RU08704ST-6A">6a </A>
Rana KK.
Guin C.
Jana S.
Roy SC.
Tetrahedron Lett.
2003,
44:
8597 ; and references cited therein
<A NAME="RU08704ST-6B">6b </A>
Kamel A.
Chouhan G.
Tetrahedron Lett.
2003,
44:
3337
<A NAME="RU08704ST-6C">6c </A>
Khan AT.
Mondal E.
Sahu PR.
Islam S.
Tetrahedron Lett.
2003,
44:
919
<A NAME="RU08704ST-6D">6d </A> For dithioacetalization using LiOTf/neat:
Firouzabadi H.
Eslami S.
Karimi B.
Bull. Chem. Soc. Jpn.
2001,
74:
2401
<A NAME="RU08704ST-6E">6e </A>
Firouzabadi H.
Karimi B.
Eslami S.
Tetrahedron Lett.
1999,
40:
4055
<A NAME="RU08704ST-6F">6f </A> For dithioacetalization using LiBF4 /CH3 CN:
Yadav JS.
Reddy BVS.
Pandey SK.
Synlett
2001,
238
<A NAME="RU08704ST-6G">6g </A> For dithioacetalization using LiClO4 /diethyl ether:
Saraswathy VG.
Sankararaman S.
J. Org. Chem.
1994,
59:
4665
<A NAME="RU08704ST-6H">6h </A>
Tietze LF.
Weigand B.
Wulff C.
Synthesis
2000,
69
<A NAME="RU08704ST-6I">6i </A> For dithioacetalization using LiBr/neat:
Firouzabadi H.
Iranpoor N.
Karimi B.
Synthesis
1999,
58
For recent leading references, see:
<A NAME="RU08704ST-7A">7a </A>
Hon Y.-S.
Lee
C.-F.
Chen R.-J.
Huang Y.-F.
Synth. Commun.
2003,
33:
2829 ; and references cited therein
<A NAME="RU08704ST-7B">7b </A>
Firouzabadi H.
Iranpoor N.
Amani K.
Synthesis
2002,
59
<A NAME="RU08704ST-8">8 </A> For a recent review, see:
Tanaka K.
Solvent-free Organic Synthesis
Wiley-VCH;
Weinheim:
2003.
<A NAME="RU08704ST-9">9 </A>
Anastas PT.
Warner JC. In
Green Chemistry: Theory and Practice
Oxford;
London:
1998.
p.115-119
For recent leading references, see:
<A NAME="RU08704ST-10A">10a </A>
Yadav JS.
Reddy BVS.
Vishmumurthy P.
Tetrahedron Lett.
2003,
44:
5691 ; and references cited therein
<A NAME="RU08704ST-10B">10b </A>
Kazemi F.
Kiasat AR.
Ebrahim S.
Synth. Commun.
2003,
33:
999
<A NAME="RU08704ST-10C">10c </A>
Kazemi F.
Kiasat AR.
Ebrahim S.
Synth. Commun.
2003,
33:
595
<A NAME="RU08704ST-11">11 </A>
LiBF4 was the best catalyst among the lithium salts tested under identical conditions:
LiOTf (41%), LiCl (4%), LiClO4 (36%), LiBr (16%), LiI (39%).
<A NAME="RU08704ST-12">12 </A> For a review, see:
Gandini A.
Adv. Polym. Sci.
1977,
25:
47
<A NAME="RU08704ST-13">13 </A>
It is important to note that ketones were efficiently thioacetalized in our method,
whereas LiBF4 /MeCN has been an ineffective reaction system, and the substrates remained intact
after prolonged reaction times.
[6f ]
<A NAME="RU08704ST-14">14 </A> For example, see:
Corey EJ.
Shimoji K.
Tetrahedron Lett.
1983,
24:
169
<A NAME="RU08704ST-15">15 </A>
Only a few methods are known in the literature for the chemoselective protection of
aldehydes in the presence of ketones: ref. 6c and references cited therein.
As far as we know, the present system is the first example for the synthesis of 1,3-dithianes
under entirely solvent-free conditions, although our procedure is applicable for only
distillable such compounds. Though 1,3-dithiane synthesis under solvent-free conditions
has been reported in some cases, unfortunately, all of these used organic solvents
in the work-up processes:
<A NAME="RU08704ST-16A">16a </A>
ref. 6d,e.
<A NAME="RU08704ST-16B">16b </A>
ref. 6i.
<A NAME="RU08704ST-16C">16c </A>
ref. 7b.
<A NAME="RU08704ST-16D">16d </A>
Laskar DD.
Prajapati D.
Sandhu JS.
J. Chem. Res., Synop.
2001,
313
<A NAME="RU08704ST-16E">16e </A>
Firouzabadi H.
Iranpoor N.
Kohmareh G.
Synth. Commun.
2003,
33:
167
<A NAME="RU08704ST-17">17 </A>
1,2-Ethanedithiol worked equally well under the same reaction conditions. For example,
treatment of benzaldehyde (6.5 mmol) with 1,2-ethanedithiol (5 mmol) in the presence
of LiBF4 (0.5 mmol) at 25 °C for 1 h afforded 2-phenyl-1,3-dithiolane in 99% yield.