Semin Liver Dis 2004; 24(2): 127-137
DOI: 10.1055/s-2004-828890
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Molecular Pathogenesis of Cholangiocarcinoma

Eric P. Berthiaume1 , Jack Wands2
  • 1Fellow in Gastroenterology, Brown Medical Schoo, Providence, Rhode Island
  • 2Professor, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island
Further Information

Publication History

Publication Date:
11 June 2004 (online)

Cholangiocarcinoma is rising in clinical importance because of increasing incidence, poor prognosis, and suboptimal response to therapy. Recent investigations into the underlying molecular mechanisms involved in cholangiocarcinogenesis and tumor growth have contributed greatly to our understanding of this disease. To review this topic, we discuss the molecular mechanisms in sections reflecting the unique features that allow cancer cells to develop and maintain a growth advantage. Through a better understanding of these mechanisms, improved and more specific diagnostic, therapeutic, and preventative strategies may be developed and hopefully improve the outcome of this devastating disease.

REFERENCES

  • 1 Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States.  Hepatology. 2001;  33 1353-1357
  • 2 Taylor-Robinson S D, Toledano M B, Arora S et al.. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968-1998.  Gut. 2001;  48 816-820
  • 3 Davila J A, El-Serag H D. Cholangiocarcinoma: the “other” liver cancer on the rise.  Am J Gastroenterol. 2002;  97 3199-3200
  • 4 Gores G. Cholangiocarcinoma: current concepts and insights.  Hepatology. 2003;  37 961-969
  • 5 Khan S A, Davidson B R, Goldin R et al.. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document.  Gut. 2002;  51 vi1-vi9
  • 6 Piet C DG, Gores G, LaRusso N et al.. Biliary tract cancers.  N Engl J Med. 1999;  341 1368-1378
  • 7 Chapman R. Risk factors for biliary tract carcinogenesis.  Ann Oncol. 1999;  10(Suppl 4) 308-311
  • 8 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 9 Liu Z, Sakamoto T, Ezure T et al.. Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial cells during a type 1 ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium.  Hepatology. 1998;  28 1260-1268
  • 10 Matsumoto K, Fujii H, Michalopoulos G et al.. Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth factors in vitro: interleukin-6, hepatocyte growth factor and epidermal growth factor promote DNA synthesis in vitro.  Hepatology. 1994;  20 376-382
  • 11 Park J, Tadlock L, Gores G J, Patel T. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line.  Hepatology. 1999;  30 1128-1133
  • 12 Yokomuro S, Tsuji H, Lunz J G et al.. Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor, transforming growth factor beta1, and activin A: comparison of a cholangiocarcinoma cell line with primary cultures of non-neoplastic bilieary epithelial cells.  Hepatology. 2000;  32 26-35
  • 13 Yokomuro S, Lunz J G, Sakamoto T et al.. The effect of interleukin-6(IL-6)/gp130 signaling on biliary epithelial cell growth, in vitro.  Cytokine. 2000;  12 727-730
  • 14 Sugawara H, Yasoshima M, Katayanagi K et al.. Relationship between interleukin-6 and proliferation and differentiation in cholangiocarcinoma.  Histopathology. 1998;  33 145-153
  • 15 Heinrich P C, Behrmann I, Serge H et al.. Principles of interleukin (IL)-6-type cytokine signaling and its regulation.  Biochem J. 2003;  374 1-20
  • 16 Yasohima M, Kono N, Sugawara H et al.. Increased expression of interleukin-6 and tumor necrosis factor-alpha in pathologic biliary epithelial cells: in situ and culture study.  Lab Invest. 1998;  78 89-100
  • 17 Goydos J S, Brumfield A M, Frezza E et al.. Marked elevation of serum interleukin-6 in patients with cholangiocarcinoma: validation of utility as a clinical marker.  Ann Surg. 1998;  227 398-404
  • 18 Okada K, Shimizu Y, Nambu S et al.. Interleukin-6 functions as an autocrine growth factor in a cholangiocarcinoma cell line.  J Gastroenterol Hepatol. 1994;  9 462-467
  • 19 Wu T, Han C, Lunz J G et al.. Involvement of 85-kd cytosolic phospholipase a2 and cyclooxygenase-2 in the proliferation of human cholangiocarcinoma cells.  Hepatology. 2002;  36 363-373
  • 20 Boccaccio C, Gaudino G, Gambarotta G et al.. Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF.  J Biol Chem. 1994;  269 12846-12851
  • 21 Lai G-H, Radaeva S, Nakamura T, Sirica A E. Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasia and associated ‘intestinal-type’ biliary cancer chemically induced in rat liver.  Hepatology. 2000;  31 1257-1265
  • 22 Radaeva S, Ferreira-Gonzalez A, Sirica A E. Overexpression of c-Neu and c-Met during rat liver cholangiocarcinogenesis: a link between biliary intestinal metaplasia and mucin-producing cholangiocarcinoma.  Hepatology. 1999;  29 1453-1462
  • 23 Aishima S I, Taguchi K I, Sugimachi K et al.. c-erbB-2 and c-Met expression relates to cholangiocarcinogenesis and progression of intrahepatic cholangiocarcinoma.  Histopathology. 2002;  40 269-278
  • 24 Harada K, Terada T, Nakanuma Y. Detection of transforming growth factor-alpha protein and messenger RNA in hepatobiliary diseases by immunohistochemical and in situ hybridization techniques.  Hum Pathol. 1996;  27 787-792
  • 25 Ito Y, Takeda T, Sasaki Y et al.. Expression and clinical significance of the erbB family in intrahepatic cholangiocarcinoma.  Pathol Res Pract. 2001;  197 95-100
  • 26 Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor.  Cell. 2002;  110 669-672
  • 27 Collier J D, Guo K, Mathew J et al.. c-erbB-2 oncogene expression in hepatocellular carcinoma and cholangiocarinoma.  J Hepatol. 1992;  14 377-380
  • 28 Terada T, Ashida K, Endo K et al.. c-erbB-2 protein is expressed in hepatolithiasis and cholangiocarcinoma.  Histopathology. 1998;  33 325-331
  • 29 Sirica A E, Radaeva S, Caran N. NEU overexpression in the furan rat model of cholangiocarcinogenesis compared with biliary ductal cell hyperplasia.  Am J Pathol. 1997;  151 1685-1694
  • 30 Kiguchi K, Carbajal S, Chan K et al.. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma.  Cancer Res. 2001;  61 6971-6976
  • 31 DuBois R N, Radhika A, Reddy B S, Entingh A J. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors.  Gastroenterology. 1996;  110 1259-1262
  • 32 Shirvani V, Ouatu-Lascar R, Kaur B S et al.. Cyclooxygenase-2 expression in Barrett's esophagus and adenocarcinoma: ex vivo induction by bile salts and acid exposure.  Gastroenterology. 2000;  118 487-496
  • 33 Eberhart C E, Coffey R J, Radhika A et al.. Up-regulation of cyclooxygenase-2 gene expression in human colorectal adenomas and adenocarcinomas.  Gastroenterology. 1994;  107 1183-1188
  • 34 Williams C S, Mann M, Dubois R N. The role of cyclooxygenases in inflammation, cancer and development.  Oncogene. 1999;  18 7908-7916
  • 35 Chariyalertsak S, Sirikulchayanonta V, Mayer D et al.. Aberrant cyclooxygenase isozyme expression in human intrahepatic cholangiocarcinoma.  Gut. 2001;  48 80-86
  • 36 Endo K, Yoon B-I, Pairojkul C et al.. ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions.  Hepatology. 2002;  36 439-450
  • 37 Hayashi N, Yamamoto H, Hiraoka N et al.. Differential expression of cyclooxygenase-2 in human bile duct epithelial cells and bile duct neoplasm.  Hepatology. 2001;  34 638-650
  • 38 Shimonishi T, Isse K, Shibata F et al.. Up-regulation of Fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance.  Hepatology. 2000;  32 761-769
  • 39 Yoon J-H, Higuchi H, Werneburg N W et al.. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line.  Gastroenterology. 2002;  122 985-993
  • 40 Sirica A E, Lai G-H, Endo K et al.. Cyclooxygenase-2 and ERBB-2 in cholangiocarcinoma: potential therapeutic targets.  Semin Liver Dis. 2002;  22 303-313
  • 41 Kang Y K, Kim W H, Lee H W et al.. Mutation of p53 and k-ras and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma.  Lab Invest. 1999;  79 477-483
  • 42 Ohashi K, Nakajima Y, Kanehiro H et al.. K-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinoma: relation to gross tumor morphology.  Gastroenterology. 1995;  109 1612-1617
  • 43 Tada M, Omata M, Ohto M. High incidence of ras gene mutation in intrahepatic cholangiocarcinoma.  Cancer. 1992;  69 1115-1118
  • 44 Tannapfel A, Benicke M, Katalinic A et al.. Frequency of p16-INK4A alteration and k-ras mutations in intrahepatic cholangiocarcinoma of the liver.  Gut. 2000;  47 721-727
  • 45 Su W C, Shiesh S C, Liu H S et al.. Expression of oncogene products HER2/neu and ras and fibrosis-related growth factors bFGF, TGF-beta, and PDGF in bile from biliary malignancies and inflammatory disorders.  Dig Dis Sci. 2001;  46 1387-1392
  • 46 Jaiswal M, LaRusso N F, Burgart L J, Gores G J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism.  Cancer Res. 2000;  60 184-190
  • 47 Evan G I, Vousden K H. Proliferation, cell cycle and apoptosis in cancer.  Nature. 2001;  411 342-348
  • 48 Levine A. p53, the cellular gatekeeper for growth and division.  Cell. 1997;  88 323-331
  • 49 Sturm P D, Baas I O, Clement M J et al.. Alterations of the p53 tumor-suppressor gene and K-ras oncogene in perihilar cholangiocarcinoma from a high-incidence area.  Int J Cancer. 1998;  78 695-698
  • 50 Tannapfel A, Weinans L, Geibler F et al.. Mutations of p53 tumor suppressor gene, apoptosis, and proliferation in intrahepatic cholangiocellular carcinoma of the liver.  Dig Dis Sci. 2000;  45 317-324
  • 51 Furubo S, Harada K, Shimonishi T et al.. Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma.  Histopathology. 1999;  35 230-240
  • 52 Tannapfel A, Engeland K, Weinans L et al.. Expression of p73, a novel protein related to the p53 tumour suppressor p53, and apoptosis in cholangiocellular carcinoma of the liver.  Br J Cancer. 1999;  80 1069-1074
  • 53 Taniai M, Higuchi H, Burgart L J, Gores G J. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma.  Gastroenterology. 2002;  123 1090-1098
  • 54 Tannapfel A, Sommerer F, Benicke M et al.. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma.  J Pathol. 2002;  197 624-631
  • 55 Ahrendt S A, Eisenberger C F, Yip L et al.. Chromosome 9p21 loss and p16 inactivation in primary sclerosing cholangitis-associated cholangiocarcinoma.  J Surg Res. 1999;  84 88-93
  • 56 Green D R, Reed J C. Mitochondria and apoptosis.  Science. 1998;  281 1309-1312
  • 57 Hengartner M. The biochemistry of apoptosis.  Nature. 2000;  407 770-776
  • 58 Kaufmann S H, Gores G J. Apoptosis and cancer.  Bioessays. 2000;  22 1007-1017
  • 59 Que F G, Phan V A, Phan V H et al.. Cholangiocarcinomas express Fas ligand and disable the Fas receptor.  Hepatology. 1999;  30 1398-1404
  • 60 Torok N J, Higuchi H, Bronk S, Gores G J. Nitric oxide inhibits apoptosis downstream of cytochrome c release by nitrosylating caspase 9.  Cancer Res. 2002;  62 1648-1653
  • 61 Charlotte F, L'Hermine A, Martin N et al.. Immunohistochemical detection of bcl-2 protein in normal and pathological human liver.  Am J Pathol. 1994;  144 460-465
  • 62 Harnois G M, Que F G, LaRusso N F, Gores G J. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line.  Hepatology. 1997;  26 884-890
  • 63 Okaro A C, Deery A R, Hutchins R R, Davidson B R. The expression of antiapoptotic proteins Bcl-2, Bcl-Xl, and Mcl-1 in benign, dysplastic and malignant biliary epithelium.  J Clin Pathol. 2001;  54 927-932
  • 64 Okaro A C, Fennell D A, Corbo M et al.. Pk11195, a mitochondrial benzodiazepine receptor antagonist, reduces apoptosis threshold in Bcl-Xl and Mcl-1 expressing human cholangiocarcinoma cells.  Gut. 2002;  51 556-561
  • 65 Nzeako U C, Guicciardi M E, Yoon J H, Bronk S F, Gores G J. COX-2 Inhibits Fas-mediated apoptosis in cholangiocarcinoma cells.  Hepatology. 2002;  35 552-559
  • 66 Lai G H, Zhang Z, Sirica A E. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced akt inactivation and increased activation of caspases-9 and -3.  Mol Cancer Ther. 2003;  2 265-271
  • 67 Yoon J-H, Werneburg N W, Higuchi H et al.. Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism.  Cancer Res. 2002;  62 6500-6505
  • 68 Buys C. Telomeres, telomerase, and cancer.  N Engl J Med. 2000;  342 1282-1283
  • 69 Shay J W, Bacchetti S. A survey of telomerase activity in human cancer.  Eur J Cancer. 1997;  33 787-791
  • 70 Bryan T M, Cech T R. Telomerase and the maintenance of chromosome ends.  Curr Opin Cell Biol. 1999;  11 318-324
  • 71 Ozaki S, Harada K, Sanzen T et al.. In situ nucleic acid detection of human telomerase in intrahepatic cholangiocarcinoma and its preneoplastic lesion.  Hepatology. 1999;  30 914-919
  • 72 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorgenesis.  Cell. 1996;  86 353-364
  • 73 Benckert C, Jonas S, Cramer T et al.. Transfoming growth factor beta 1 stimulates vascular endothelial growth factor gene transcrtiption in human cholangiocellular carcinoma cells.  Cancer Res. 2003;  63 1083-1092
  • 74 Ashida K, Terada T, Kitamura Y, Kaibara N. Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study.  Hepatology. 1998;  27 974-982
  • 75 Terada T, Okada Y, Nakanuma Y. Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors.  Hepatology. 1996;  23 1341-1344
  • 76 Lavaissiere L, Jia S, Nishiyama M et al.. Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma.  J Clin Invest. 1996;  98 1313-1323
  • 77 Ince N, de la Monte S, Wands J R. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation.  Cancer Res. 2000;  60 1261-1266
  • 78 Maeda T, Sepe P, Lahousse S et al.. Antisense oligodeoxynucleotides directed against aspartyl (asparaginyl) beta-hydroxylase suppress migration of cholangiocarcinoma cells.  J Hepatol. 2003;  38 615-622
  • 79 Tanaka S, Sugimachi K, Kameyama T et al.. Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma.  Hepatology. 2003;  37 1122-1129
  • 80 Kireeva M L, Mo F E, Yang F P, Lau L F. Cyr61, a product of growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion.  Mol Cell Biol. 1996;  16 1326-1334

Jack WandsM.D. 

Liver Research Center, Rhode Island Hospital

593 Eddy Street, APC, 421

Providence, RI 02903

Email: jack_wands_md@brown.edu

    >