Zusammenfassung
Die Anwendung von Rekruitmentmanövern wird als additive Therapiestrategie in der Behandlung
des akuten Lungenversagens empfohlen, um eine rasche Öffnung atelektatischer Lungenkompartimente
zu erzielen und danach die rekrutierten Alveolen durch Applikation eines adäquat hohen
positiven endexpiratorischen Drucks (PEEP) offen zu halten. Die schnelle Rekrutierung
von Atelektasen durch Rekruitmentmanöver führte mitunter zu einer deutlichen Verbesserung
der Oxygenierung mit konsekutiver Reduktion der Beatmungsinvasivität. Obwohl in mehreren
Studien über eine Verbesserung des Gasaustausches nach einem Rekruitmentmanöver berichtet
wurde, bleibt diese Intervention nach wie vor Gegenstand kontroverser Diskussionen,
vor allem im Zusammenhang mit einer lungenprotektiven Beatmungsstrategie. In diesem
Übersichtsartikel diskutieren wir den pathophysiologischen Hintergrund, begünstigende
Faktoren für die Effektivität eines Rekruitmentmanövers und dessen klinischen Stellenwert
im Lichte aktueller Publikationen. Die Effektivität eines Rekruitmentmanövers ist
vor allem abhängig von der Höhe des Rekrutierungsdrucks und des applizierten PEEP
vor und nach dem Rekruitmentmanöver, der Ätiologie und dem Stadium des akuten Lungenversagens,
der Atemmechanik des respiratorischen Systems bzw. der Höhe des transpulmonalen Drucks
sowie von der Lagerung des Patienten. Vor dem Hintergrund der derzeitigen Literatur
sind Rekruitmentmanöver als eine „Rescue-Therapie” in der Frühphase eines lebensbedrohenden
hypoxämischen Lungenversagens anzusehen, wenn trotz einer lungenprotektiven Beatmungsstrategie
und additiver Maßnahmen wie Lagerungstherapie und Applikation von inhalativen Vasodilatatoren
kein adäquater Gasaustausch zu erzielen ist.
Abstract
In patients with acute respiratory distress syndrome (ARDS), recruitment maneuvers
have been proposed as an adjunct to mechanical ventilation to open up atelectasis
and to keep these alveoli open by the application of adequate high levels of positive
end-expiratory pressure (PEEP). Though several studies reported that the responsiveness
to recruitment maneuvers resulted in a marked improvement of oxygenation with a concomitant
decrease in airway pressure and/or inspiratory fraction of oxygen, the performance
of recruitment maneuvers still remains a matter of dispute, especially in patients
ventilated with a lung protective ventilation strategy. In this review we discuss
the pathophysiological background, factors affecting the responsiveness to recruitment
maneuvers and their clinical impact in the light of recently published studies. Successful
recruitment depends on several factors like the applied recruitment pressure, the
level of PEEP set before and after the recruitment maneuver, the stage and the underlying
disease of the ARDS, chest wall mechanics and the transpulmonary pressure as well
as the positioning of the patient. Regarding the current literature, recruitment maneuvers
may be considered as a rescue therapy in the early stage of severe hypoxemic lung
failure, if a lung protective ventilation strategy and other additive adjuncts like
prone positioning or the application of inhaled vasodilators failed to induce adequate
gas exchange.
Schlüsselwörter
Akutes Lungenversagen · alveoläres Rekruitment · Rekruitmentmanöver · Konzept der
offenen Lunge · lungenprotektive Beatmung
Key words
Acute respiratory distress syndrome · alveolar recruitment · recruitment maneuver
· open lung approach · lung protective ventilation
Literatur
1
McIntyre R C, Pulido E J, Bensard D D, Shames B D, Abraham E.
Thirty years of clinical trials in acute respiratory distress syndrome.
Crit Care Med.
2000;
28
3314-3331
2
Koleff M, Schuster D.
The acute respiratory distress syndrome.
N Engl J Med.
1995;
323
27-37
3
Lewis J, Jobe A.
Surfactant and the adult respiratory distress syndrome.
Am Rev Respir Dis.
1993;
147
218-233
4
Amato M BP, Barbas C SV, Medeiros D M, Magaldi R B, Schettino G P, Lorenzi-Filho G,
Kairalla R A, Deheinzelin D, Munoz C, Oliveira R, Takagaki T Y, Carvalho C RR.
Effect of a protective-ventilation strategy on mortality in the acute respiratory
distress syndrome.
N Engl J Med.
1998;
338
347-354
5
Brower R G, Matthay M A, Morris A, Schoenfeld D, Thompson T, Wheeler A,. and the Acute
Respiratory Distress Syndrome Network .
Ventilation with lower tidal volumes as compared with traditional tidal volumes for
acute lung injury and the acute respiratory distress syndrome.
N Engl J Med.
2000;
342
1301-1308
6
Lachmann B.
Open up the lung and keep the lung open.
Intensive Care Med.
1992;
18
319-321
7
Vazquez de Anda G F, Lachmann B.
Protecting the lung during mechanical ventilation with the open lung concept.
Acta Anaesthesiol Scand (Suppl).
1998;
112 (42)
63-66
8
Engelmann L.
Das Open-Lung-Konzept.
Anaesthesist.
2000;
49
1046-1053
9
Hickling K.
Best Compliance during a Decremental, But Not Incremental, Positive End-Expiratory
Pressure Trial Is Related to Open-Lung Positive End-Expiratory Pressure. A Mathematical
Model of Acute Respiratory Distress Syndrome Lungs.
Am J Respir Crit Care Med.
2001;
163
69-78
10
Richard J, Brochard L, Vandelet P h, Breton L, Maggiore S, Jonson B, Clabault K, Leroy J,
Bonmarchand G.
Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment
in acute lung injury.
Crit Care Med.
2003;
31
89-92
11
Richard J, Maggiore S, Jonson B, Mancebo J, Lemaire F, Brochard L.
Influence of tidal volume on alveolar recruitment.
Am J Respir Crit Care Med.
2001;
163
1609-1613
12
Böhm S, Suarez Sipmann F, Lachmann B.
Das Konzept der offenen Lunge.
Intensivmed.
1999;
36:Suppl.1
31-33
13
Lapinsky S E, Aubin M, Metha S, Boiteau P, Slutsky A S.
Safety and efficacy of a sustained inflation for alveolar recruitment in adults with
respiratory failure.
Intensive Care Med.
1999;
25
1297-1301
14
Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L.
Sigh in Acute Respiratory Distress Syndrome.
Am J Respir Crit Care Med.
1999;
159
872-880
15
Lim C M, Koh Y, Park W, Chin J Y, Shim T S, Lee S D, Kim W S, Kim D S, Kim W D.
Mechanistic scheme and effect of ”extended sigh” as a recruitment maneuver in patients
with acute respiratory distress syndrome: A preliminary study.
Crit Care Med.
2001;
29
1255-1260
16
Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky A, Ranieri M.
Effects of recruiting maneuvers in patients with acute respiratory distress syndrome
ventilated with protective ventilatory strategy.
Anesthesiology.
2002;
96
795-802
17
Villagra A, Ochagavia A, Vatua S, Murias G, Fernandez M, Lopez Aguilar J, Fernandez R,
Blanch L.
Recruitment maneuvers during lung protective ventilation in acute respiratory distress
syndrome.
Am J Respir Crit Care Med.
2002;
165
165-170
18
The ARDS Clinical Trials Network; National Heart, Lung, and Blood Institute, National
Institutes of Health .
Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory
distress syndrome ventilated with high positive end-expiratory pressure.
Crit Care Med.
2003;
31
2592-2597
19
Oczenski W, Hörmann C, Keller C, Lorenzl N, Kepka A, Schwarz S, Fitzgerald R D.
Recruitment maneuvers following a positive end-expiratory pressure trial do not induce
sustained effects in adult respiratory distress syndrome.
Anesthesiology.
2004;
100
in press
20
Ranieri V, Giuliani R, Fiore T, Dambrosio M, Milic Emili J.
Volume Pressure Curve of the respiratory system predicts effects of PEEP in ARDS:
”Occlusion” versus ”Constant Flow” Technique.
Am J Respir Crit Care Med.
1994;
149
19-27
21
Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R,
Marcolin R, Mascheroni D, Torresin A.
Relationship between lung computer tomographic density, gas exchange, and PEEP in
acute respiratory failure.
Anesthesiology.
1988;
69
824-832
22
Kunst P W, Böhm S H, Vazquez de Anda G, Amato M B, Lachmann B, Postmus P E, de Vries P M.
Regional pressure volume curves by electrical impedance tomography in a model of acute
lung injury.
Crit Care Med..
2000;
28
178-183
23
Rimensberger P C, Cox P N, Frndova H, Bryan A C.
The open lung during small tidal volume ventilation: concepts of recruitment and ”optimal“
positive end-expiratory pressure.
Crit Care Med.
1999;
27
1946-1952
24
Houmes R JM, Bos J AH, Lachmann B.
Effect of different ventilator settings on lung mechanics: with special reference
to the surfactant system.
Appl Cardiopulm Pathophysiol.
1994;
5
117-127
25
Van der Kloot T, Blanch L, Youngblood A, Weinert C, Adams A, Marini J, Shapiro R,
Nahum A.
Recruitment maneuvers in three experimental models of acute lung injury.
Am J Respir Crit Care.
2000;
161
1485-1494
26
Foti G, Cereda M, Sparacino M E, de Marchi L, Villa F, Pesenti A.
Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics
in mechanically ventilated acute respiratory distress syndrome (ARDS) patients.
Intensive Care Med.
2000;
26
501-507
27 Marini J J, Amato M B.
Lung recruitment during ARDS. In: Marini JJ, Evans TW (eds) Acute lung injury. Berlin; Springer 1998: 236-257
28
Sjöstrand U H, Lichtwarck-Aschoff M, Nielsen J B, Markström A, Larsson A, Svensson B A,
Wegenius G A, Nordgren K A.
Different ventilatory approaches to keep the lung open.
Intensive Care Med.
1995;
21
310-318
29
Fujino Y, Goddon S, Dolhnikoff M, Hess D, Amato M, Kacmarek R.
Repetitive high-pressure recruitment maneuvers required to maximally recruit lung
in a sheep model of acute respiratory distress syndrome.
Crit Care Med.
2001;
29
1579-1586
30
Medoff B, Harris R, Kesselmann H, Venegas J, Amato M, Hess D.
Use of recruitment maneuvers and high positive end-expiratory pressure in a patient
with acute respiratory distress syndrome.
Crit Care Med.
2000;
28
1210-1216
31
Marshall R P, Bellingan G, Webb S, Puddicombe A, Goldsack N, McAnulty R J, Laurent G J.
Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts
on outcome.
Am J Respir Crit Care Med.
2000;
162
1783-1788
32
Gattinoni L, Pelosi P, Suter P M, Pedoto A, Vercesi A, Lissoni A.
Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease.
Am J Respir Crit Care Med.
1998;
158
3-11
33
Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini J, Gattinoni L.
Recruitment and derecruitment during acute respiratory failure. A clinical study.
Am J Respir Crit Care Med.
2001;
164
131-140
34
Lim C M, Jung H, Koh Y, Lee J S, Shim T S, Lee S D, Kim W S, Kim W S, Kim D S, Kim W D.
Effect of alveolar recruitment maneuver in early acute respiratory distress syndrome
according to antiderecruitment strategy, etiological category of diffuse lung injury,
and body position of the patient.
Crit Care Med.
2003;
31
411-418
35
Puybasset L, Gusman P, Muller J C, Cluzel P, Coriat P, Rouby J,. and the CT Scan ARDS
Study Group .
Regional distribution of gas and tissue in acute respiratory distress syndrome. III:
Consequences for the effects of positive end-expiratory pressure.
Intensive Care Med.
2000;
26
1215-1227
36
Cakar N, Akinci O, Tugrul S, Ozcan P E, Esen F, Eraksoy H, Cagatay A, Telci L, Nahum A.
Recruitment maneuver: Does it promote bacterial translocation?.
Crit Care Med.
2002;
30
2103-2106
37
Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A.
Impact of positive endexpiratory pressure on chest wall and lung pressure volume curve
in acute respiratory failure.
Am J Respir Crit Care Med.
1997;
156
846-854
38
Dreyfuss D, Soler P, Basset G, Saumon G.
High inflation pressure pulmonary edema: Respective effects of high airway pressure.
Am Rev Respir Dis.
1988;
137
159-1164
39
Mead J, Takishima T, Leith D.
Stress distribution in lungs: a model of pulmonary elasticity.
J Appl Physiol.
1970;
28
596-608
40
Bachofen H, Schürch S, Weibel E R.
Experimental hydrostatic pulmonary edema in rabbit lung. Barrier lesions.
Am Rev Respir Dis.
1993;
147
997-1004
41
Tremblay L, Slutsky A.
Ventilator induced lung injury: from barotraumas to biotrauma.
Proc-Assoc-Am-Physicians.
1998;
110
482-488
42
Uhlig S, Ranieri M, Slutsky A S.
Biotrauma hypothesis of ventilator induced lung injury.
Am J Respir Crit Care Med.
2003;
167
467-1471
43
Ranieri V M, Suter P M, Tortorella C, de Tullio R, Dayer J M, Brienza A, Bruno F,
Slutsky A S.
Effect of mechanical ventilation on inflammatory mediators in patients with acute
respiratory distress syndrome: a randomized controlled trial.
JAMA.
1999;
282
54-61
44
Slutsky A S, Tremblay L N.
Multiple system organ failure.
Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med.
1998;
157
1721-1725
45
Mols G, Hermle G, Fries G, Benzing A, Lichtwarck-Aschoff M, Geiger K, Guttmann J.
Different strategies to keep the lung open: a study in isolated perfused rabbit lungs.
Crit Care Med.
2002;
30
1598-1604
46
Gattinoni L, Pelosi P, Crotti S, Valenza F.
Effects of positive end-expiratory pressure on regional distribution tidal volume
and recruitment in adult respiratory distress syndrome.
Am J Respir Crit Care Med.
1995;
151
1807-1814
47
Mutoh T, Guest R J, Lamm W J, Albert R K.
Prone position alters the effect of volume overload on regional pleural pressures
and improves hypoxemia in pigs in vivo.
Am Rev Respir Dis.
1992;
146
300-306
48
Lamm W J, Graham M M, Albert R K.
Mechanisms by which the prone position improves oxygenation in acute lung injury.
Am J Respir Crit Care Med.
1994;
150
184-193
49
Pappert D, Rossaint R, Slama K, Gruning T, Falke K J.
Influence of positioning on ventilation-perfusion relationships in severe adult respiratory
distress syndrome.
Chest.
1994;
106
1511-1516
50
Cakar N, van der Kloot T, Youngblood M, Adams A, Nahum A.
Oxygenation response to a recruitment maneuver during supine and prone positions in
an oleic acid-induced lung injury model.
Am J Respir Crit Care Med.
2000;
161
1949-1956
51
Pelosi P, Bottino N, Chiumello D, Caironi P, Panigada M, Gamberoni C h, Colombo G,
Bigatello L M, Gattinoni L.
Sigh in supine and prone position during acute respiratory distress syndrome.
Am J Respir Crit Care Med.
2003;
167
521-527
52
Marini J J.
Efficacy of lung recruiting maneuvers: It`s all relative.
Crit Care Med.
2003;
31
641-642
53
Musch G, Harris R S, Vidal Melo M F, O'Neill K R, Layfield J D, Winkler T, Venegas J G.
Mechanisms by which a sustained inflation can worsen oxygenation in acute lung injury.
Anesthesiology.
2004;
100
323-330
54 Gattinoni L, Chiumello D, Pelosi P.
Chest wall mechanics in ARDS . In: Slutsky AS, Brochard L (eds.) Mechanical Ventilation. Berlin; Springer 2004:
275-286
55
Bein T, Kuhr L P, Bele S, Ploner F, Keyl C, Taeger K.
Lung recruitment maneuver in patients with cerebral injury: effects on intracranial
pressure and cerebral metabolism.
Intensive Care Med.
2002;
28
554-558
56
Claesson J, Lehtipalo S, Winso O.
Do lung recruitment maneuvers decrease gastric mucosal perfusion.
Intensive Care Med.
2003;
29
1314-1321
57
Gattinoni L, Vagginelli F, Carlesso E, Taccone P, Conte V, Chiumello D, Valenza F,
Caironi P, Pesenti A. for the Prone-Supine Study Group .
Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress
syndrome.
Crit Care Med.
2003;
31
2727-2733
OA Dr. Wolfgang Oczenski
Abteilung für Anästhesie und Intensivmedizin, Ludwig Boltzmann Institut für Medizinökonomie
in Anästhesie und Intensivmedizin
Krankenhaus der Stadt Wien Lainz · Wolkersbergenstraße 1 · A-1130 Wien
Email: wolfgang.oczenski@wienkav.at