Plant Biol (Stuttg) 2004; 6(5): 519-528
DOI: 10.1055/s-2004-821091
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Differential Expression of Three Purple Acid Phosphatases from Potato

P. Zimmermann1 , B. Regierer2 , J. Kossmann3 , E. Frossard1 , N. Amrhein4 , M. Bucher1
  • 1Swiss Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon, 8315 Lindau, Switzerland
  • 2University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24 - 25, Haus 20, 14476 Golm, Germany
  • 3Risø National Laboratory, Plant Research Department, 4000 Roskilde, Denmark
  • 4Swiss Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Universitätsstrasse 2, 8092 Zurich, Switzerland
Further Information

Publication History

Publication Date:
06 August 2004 (online)

Abstract

Three cDNAs encoding purple acid phosphatase (PAP) were cloned from potato (Solanum tuberosum L. cv. Désirée) and expression of the corresponding genes was characterised. StPAP1 encodes a low-molecular weight PAP clustering with mammalian, cyanobacterial, and other plant PAPs. It was highly expressed in stem and root and its expression did not change in response to phosphorus (P) deprivation. StPAP2 and StPAP3 code for high-molecular weight PAPs typical for plants. Corresponding gene expression was shown to be responsive to the level of P supply, with transcripts of StPAP2 and StPAP3 being most abundant in P-deprived roots or both stem and roots, respectively. Root colonisation by arbuscular mycorrhizal fungi had no effect on the expression of any of the three PAP genes. StPAP1 mRNA is easily detectable along the root axis, including root hairs, but is barely detectable in root tips. In contrast, both StPAP2 and StPAP3 transcripts are abundant along the root axis, but absent in root hairs, and are most abundant in the root tip. All three PAPs described contain a predicted N-terminal secretion signal and could play a role in extracellular P scavenging, P mobilisation from the rhizosphere, or cell wall regeneration.

References

  • 1 Beck J., McConaghie L., Summors A., Arnold W., de Jersey J., Zerner B.. Properties of a purple acid phosphatase from red kidney bean: a zinc-iron metalloenzyme.  Biochim. Biophys. Acta. (1986);  869 61-68
  • 2 Bozzo G. G., Raghothama K. G., Plaxton W. C.. Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.  Eur. J. Biochem.. (2002);  269 6278-6286
  • 3 Bucher M., Schroeer B., Willmitzer L., Riesmeier J. W.. Two genes encoding extensin-like proteins are predominantly expressed in tomato root hair cells.  Plant Mol. Biol.. (1997);  35 497-508
  • 4 Cashikar A., Rao M.. Unique structural features of red kidney bean purple acid-phosphatase.  Indian J. Biochem. Biophys.. (1995);  32 130-136
  • 5 Cashikar A. G., Kumaresan R., Rao N. M.. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase.  Plant Physiol.. (1997);  114 907-915
  • 6 Daram P., Brunner S., Persson B. L., Amrhein N., Bucher M.. Functional analysis and cell-specific expression of a phosphate transporter from tomato.  Planta. (1998);  206 225-233
  • 7 del Pozo J. C., Allona I., Rubio V., Leyva A., de la Pena A., Aragoncillo C., Paz-Ares J.. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions.  Plant J.. (1999);  19 579-589
  • 8 Deng S., Summers M. L., Khan M. L., McDermott T. R.. Cloning and characterization of a Rhizobium meliloti nonspecific acid phosphatase.  Arch. Microbiol. (1998);  170 18-26
  • 9 Dinkelaker B., Marschner H.. In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants.  Plant Soil. (1992);  144 199-205
  • 10 Duff S. M. G., Sarath G., Plaxton W. C.. The role of acid phosphatases in plant phosphorus metabolism.  Physiol. Plantarum. (1994);  90 791-800
  • 11 Durmus A., Eicken C., Sift B. H., Kratel A., Kappl R., Huttermann J., Krebs B.. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) - Metal content and spectroscopic characterization.  Eur. J. Biochem.. (1999);  260 709-716
  • 12 Felsenstein J.. PHYLIP (phylogeny inference package) version 3.5. A computer program distributed by the author. Seattle, Washington; Department of Genetics, University of Washington (1993)
  • 13 Frohman M. A., Dush M. K., Martin G. R.. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.  Proc. Natl. Acad. Sci. USA. (1988);  85 8998-9002
  • 14 Garnier J., Gibrat J.-F., Robson B.. GOR secondary structure prediction method version IV. Doolittle, R. F., ed. Methods in Enzymology, Vol. 266. San Diego; Academic Press (1996): 540-553
  • 15 Haran S., Logendra S., Seskar M., Bratanova M., Raskin I.. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression.  Plant Physiol.. (2000);  124 615-626
  • 16 Hefler S. K., Averill B. A.. The “manganese(III)-containing” purple acid phosphatase from sweet potatoes is an iron enzyme.  Biochem. Biophys. Res. Commun.. (1987);  146 1173-1177
  • 17 Hegeman C. E., Grabau E. A.. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings.  Plant Physiol.. (2001);  126 1598-1608
  • 18 Kaida R., Kaneko T.. Overexpression of purple acid phosphatase enhances accumulation of beta-glucan on surface of protoplasts during cell wall regeneration.  Plant Cell Physiol.. (2002);  43 (Suppl.) S139
  • 19 Kaida R., Sage-Ono K., Kamada H., Okuyama H., Syono K., Kaneko T. S.. Isolation and characterization of four cell wall purple acid phosphatase genes from tobacco cells.  Biochim. Biophys. Acta. (2003);  1625 134-140
  • 20 Kimura E.. Dimetallic hydrolases and their models.  Curr. Opin. Chem. Biol.. (2000);  4 207-213
  • 21 Klabunde T., Strater N., Krebs B., Witzel H.. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid-phosphatases.  FEBS Letters. (1995);  367 56-60
  • 22 Klabunde T., Strater N., Frohlich R., Witzel H., Krebs B.. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures.  J. Mol. Biol.. (1996);  259 737-748
  • 23 Klabunde T., Stahl B., Suerbaum H., Hahner S., Karas M., Hillenkamp F., Krebs B., Witzel H.. The amino-acid-sequence of the red kidney bean Fe(Iii)-Zn(Ii) purple acid-phosphatase - determination of the amino-acid- sequence by a combination of matrix-assisted laser-desorption ionization mass-spectrometry and automated Edman sequencing.  Eur. J. Biochem.. (1994);  226 369-375
  • 24 Knofel T., Strater N.. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5′-nucleotidase based on crystal structures.  J. Mol. Biol.. (2001);  309 239-254
  • 25 Lebansky B. R., McKnight T. D., Griffing L. R.. Purification and characterization of a secreted purple phosphatase from soybean suspension cultures.  Plant Physiol.. (1991);  99 391-395
  • 26 Leggewie G., Willmitzer L., Riesmeier J. W.. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants.  Plant Cell. (1997);  9 381-392
  • 27 Li D., Zhu H., Liu K., Liu X., Leggewie G., Udvardi M., Wang D.. Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation.  J. Biol. Chem.. (2002);  277 72-81
  • 28 Liao H., Wong F. L., Phang T. H., Cheung M. Y., Li W. Y., Shao G., Yan X., Lam H. M.. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency.  Gene. (2003);  318 103-111
  • 29 Miller S. S., Liu J., Allan D. L., Menzhuber C. J., Fedorova M., Vance C. P.. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin.  Plant Physiol.. (2001);  127 594-606
  • 30 Nakazato H., Okamoto T., Nishikoori M., Washio K., Morita N., Haraguchi K., Thompson Jr. G. A., Okuyama H.. The glycosylphosphatidylinositol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase.  Plant Physiol.. (1998);  118 1015-1020
  • 31 Nielsen H., Engelbrecht J., Brunak S., von Heijne G.. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.  Protein Eng.. (1997);  10 1-6
  • 32 Oddie G. W., Schenk G., Angel N. Z., Walsh N., Guddat L. W., de Jersey J., Cassady A. I., Hamilton S. E., Hume D. A.. Structure, function, and regulation of tartrate-resistant acid phosphatase.  Bone. (2000);  27 575-584
  • 33 Petters J., Gobel C., Scheel D., Rosahl S.. A pathogen-responsive cDNA from potato encodes a protein with homology to a phosphate starvation-induced phosphatase.  Plant Cell Physiol.. (2002);  43 1049-1053
  • 34 Rausch C., Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., Amrhein N., Bucher M.. A phosphate transporter expressed in arbuscule-containing cells in potato.  Nature. (2001);  414 462-470
  • 45 Sambrook J., Frisch E. F., Maniatis T.. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbour, NY; Cold Spring Harbour Press (1989)
  • 35 Schenk G., Korsinczky M. L., Hume D. A., Hamilton S., DeJersey J.. Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes.  Gene. (2000 a);  255 419-424
  • 36 Schenk G., Guddat L. W., Ge Y., Carrington L. E., Hume D. A., Hamilton S., de Jersey J.. Identification of mammalian-like purple acid phosphatases in a wide range of plants.  Gene. (2000 b);  250 117-125
  • 37 Schenk G., Boutchard C. L., Carrington L. E., Noble C. J., Moubaraki B., Murray K. S., de Jersey J., Hanson G. R., Hamilton S.. A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn center.  J. Biol. Chem.. (2001);  276 19084-19088
  • 38 Stahl B., Klabunde T., Witzel H., Krebs B., Steup M., Karas M., Hillenkamp F.. The oligosaccharides of the Fe(Iii)-Zn(Ii) purple acid- phosphatase of the red kidney bean - determination of the structure by a combination of matrix-assisted laser-desorption ionization mass-spectrometry and selective enzymatic degradation.  Eur. J. Biochem.. (1994);  220 321-330
  • 39 Steiner C., Bauer J., Amrhein N., Bucher M.. Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum. .  Biochim. Biophys. Acta. (2003);  1625 123-133
  • 40 Strater N., Klabunde T., Tucker P., Witzel H., Krebs B.. Crystal structure of a purple acid-phosphatase containing a dinuclear Fe(III)-Zn(II) active-site.  Science. (1995);  268 1489-1492
  • 41 Thompson J., Higgins G., Gibson T.. CLUSTALW: increasing the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.  Nucleic Acids Res.. (1994);  22 4673-4680
  • 42 Wasaki J., Omura M., Ando M., Dateki H., Shinano T., Osaki M., Ito H., Matsui H., Tadano T.. Molecular cloning and root specific expression of secretory acid phosphatase from phosphate deficient lupin (Lupinus albus L.).  Soil Sci. Plant. Nutr.. (2000);  46 427-437
  • 43 Zimmermann P.. Root-secreted phosphomonoesterases mobilizing phosphorus from the rhizosphere. ETH Zurich: Diss. ETH Nr. 15027, Institute of Plant Sciences. (2003 a)
  • 44 Zimmermann P., Zardi G. I., Lehmann M., Zeder C., Amrhein N., Frossard E., Bucher M.. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts.  Plant Biotechnol. J.. (2003 b);  1 353-360

M. Bucher

Swiss Federal Institute of Technology (ETH) Zurich
Institute of Plant Sciences
Experimental Station Eschikon

8315 Lindau

Switzerland

Email: marcel.bucher@ipw.biol.ethz.ch

Section Editor: J. Whelan

    >