Plant Biol (Stuttg) 2004; 6(3): 299-306
DOI: 10.1055/s-2004-817882
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Interaction of Flooding with Carbon Metabolism of Forest Trees

J. Kreuzwieser1 , E. Papadopoulou1 , H. Rennenberg1
  • 1Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Freiburg, Germany
Further Information

Publication History

Publication Date:
14 May 2004 (online)

Abstract

Waterlogging and flooding cause oxygen deprivation in the root system of trees. Since oxygen is essentially for mitochondrial respiration, this process cannot be maintained under anoxic conditions and must be replaced by other pathways. For the roots it is therefore a matter of survival to switch from respiration to alcoholic fermentation. Due to the low efficiency of this process to yield energy equivalents (ATP), energy and carbon metabolism of trees are usually strongly affected by oxygen deprivation, even if a rapid switch from respiration to fermentation is achieved. The roots can compensate for the low energy yield of fermentation either (1) by decreasing the demand for energy by a reduction of energy-dependent processes such as root growth and/or nutrient uptake, or (2) by consuming more carbohydrates per unit time in order to generate sufficient energy equivalents. In the leaves of trees, flooding and waterlogging cause a decline in the rates of photosynthesis and transpiration, as well as in stomatal conductance. It is assumed that, due to reduced phloem transport, soluble sugars and starch accumulate in the leaves of flooded trees, thereby negatively affecting the sugar supply of the roots. Thus, root growth and survival is negatively affected by both changes in root internal carbon metabolism and impaired carbon allocation to the roots by phloem transport. In addition, accumulation of toxic products of fermentation in the roots, such as acetaldehyde, can further impair root metabolism. A main feature of tolerance against flooding and waterlogging of trees seems to be the steady supply of carbohydrates to the roots in order to maintain alcoholic fermentation; in addition, roots of tolerant trees seem to avoid accumulation of fermentation-derived ethanol and acetaldehyde. From studies with flooding tolerant and non-tolerant tree species, it is hypothesized that (1) the transport of ethanol produced in the roots under hypoxic conditions into the leaves via the transpiration stream, (2) its conversion into acetyl-CoA in the leaves, and (3) its use in the plant's general metabolism, are mechanisms of flooding tolerance of trees.

References

  • 1 Albrecht G., Biemelt S.. A comparative study on carbohydrate reserves and ethanolic fermentation in the roots of two wetland and non-wetland species after commencement of hypoxia.  Physiologia Plantarum. (1998);  104 81-86
  • 2 Albrecht G., Kammerer S., Praznik W., Wiedenroth E. M.. Fructan content of wheat seedlings (Triticum aestivum L.) under hypoxia and following re-aeration.  New Phytologist. (1993);  123 471-476
  • 3 Angeles G., Evert R. F., Kozlowski T. T.. Development of lenticels and adventitious roots in flooded Ulmus americana seedlings.  Canadian Journal of Forest Research. (1986);  16 585-590
  • 4 Angelov M. N., Sung S.-J. S., Doong R. L., Harms W. R., Kormanik P. P., Black Jr. C. C.. Long- and short-term flooding effects on survival and sink-source relationships of swamp-adapted tree species.  Tree Physiology. (1996);  16 477-484
  • 5 Bardossy A., Caspary H. J.. Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989.  Theoretical and Applied Climatology. (1990);  42 155-167
  • 6 Barta A. L.. Ethanol synthesis and loss from flooded roots of Medicago sativa L. and Lotus corniculatus L.  Plant Cell and Environment. (1984);  7 187-191
  • 7 Beckman T. G., Perry R. L., Flore J. A.. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees.  Hortscience. (1992);  27 1297-1301
  • 8 Bertani A., Reggiani R.. Anaerobic metabolism in rice roots. Jackson, M. B., Davies, D. D., and Lambers, H., eds. Plant life under Oxygen Deprivation. The Hague, The Netherlands; SPB Academic Publishing (1991): 187-200
  • 9 Biegelmaier K.-H.. Integriertes Rheinprogramm: Untersuchungen zur Hochwassertoleranz von Waldbäumen (Teil 1 und 2), LfU, Ref. 25-IRP. (1993)
  • 10 Biegelmaier K.-H.. Auswirkungen des Hochwassers im Rheinauewald.  AFZ. (2002);  15 801-803
  • 11 Biemelt S., Hajirezaei M. R., Melzer M., Albrecht G., Sonnewald U.. Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions.  Planta. (1999);  210 41-49
  • 12 Blom C. W. P. M., Voesenek L. A. C. J.. Flooding: the survival strategies of plants.  Trends in Ecology and Evolution. (1996);  11 290-295
  • 13 Braendle R.. Überflutung und Sauerstoff. Brunold, C., Rüegsegger, A., and Brändle, R., eds. Stress bei Pflanzen. Bern, Stuttgart, Wien; UTB Verlag Paul Haupt (1997): 133-148
  • 14 Castonguay Y., Nadeau P., Simard R. R.. Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa.  Plant, Cell and Environment. (1993);  16 695-702
  • 15 Colin-Belgrand M., Dreyer E., Biron P.. Sensitivity of seedlings from different oak species to waterlogging: effects on root growth and mineral nutrition.  Annales des Sciences Forestières. (1991);  48 193-204
  • 16 Crawford R. M. M., Finegan D. M.. Removal of ethanol from lodgepole pine roots.  Tree Physiology. (1989);  5 53-61
  • 17 Dister E.. Zur Hochwassertoleranz von Auenwaldbäumen an lehmigen Standorten. Verhandlungen der Gesellschaft für Ökologie, Mainz, Band 10. (1983): 325-336
  • 18 Domingo R., Perez-Pastor A., Ruiz-Sanchez M. C.. Physiological responses of apricot plants grafted on two different rootstocks to flooding conditions.  Journal of Plant Physiology. (2002);  159 725-732
  • 19 Drew M. C.. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia.  Annual Reviews of Plant Molecular Biology. (1997);  48 223-250
  • 20 Drew M. C.. Sensing soil oxygen.  Plant Cell and Environment. (1990);  13 681-693
  • 21 Drew M. C.. Oxygen deficiency in the roots environment an plant mineral nutrition. Jackson, M. B., Davies, D. D., and Lambers, H., eds. Plant Life under Oxygen Deprivation. The Hague, The Netherlands; SPB Academic Publishing (1991): 303-316
  • 22 Drew M. C., Bazzaz F. A.. Variation in distribution of assimilates among plant parts in three populations of Populus deltoides. .  Silvae Genetica. (1978);  27 189-193
  • 23 Dreyer E.. Compared sensitivity of seedlings from 3 woody species (Quercus robur L., Quercus rubra L. and Fagus sylvatica L.) to water-logging and associated root hypoxia: effects on water relations and photosynthesis.  Annales des Sciences Forestières. (1994);  51 417-429
  • 24 Dreyer E., Colin-Belgrand M., Biron P.. Photosynthesis and shoot water status of seedlings from different oak species submitted to waterlogging.  Annales des Sciences Forestières. (1991);  48 205-214
  • 25 Ellenberg H.. Vegetation Mitteleuropas mit den Alpen. ISBN 3-80013-428-4. 989 pp. Stuttgart, Germany; Verlag Eugen Ulmer (1986)
  • 26 Ellis M. H., Millar A. A., Llewellyn D. J., Peacock W. J., Dennis E. S.. Transgenic cotton (Gossypium hirsutum) overexpressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency.  Australian Journal of Plant Physiology. (2000);  27 1041-1050
  • 27 Else M. A., Tiekstra A. E., Croker S. J., Davies W. J., Jackson M. B.. Stomatal closure in flooded tomato plants involves abscisic acid and a chemical unidentified anti-transpirant in xylem sap.  Plant Physiology. (1996);  112 239-247
  • 28 Ewing K.. Tolerance of four wetland plant species to flooding and sediment deposition.  Environmental and Experimental Botany. (1996);  36 131-146
  • 29 Frye J., Grosse W.. Growth responses to flooding and recovery of deciduous trees.  Zeitschrift fuer Naturforschung Section C Journal of Biosciences. (1992);  47 683-689
  • 30 Gill C.. The flooding tolerance of woody species - a review.  Forestry Abstracts. (1970);  31 671-688
  • 31 Goldschmidt E. E., Huber S. G.. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose and hexose sugars.  Plant Physiology. (1992);  99 1443-1448
  • 32 Good A. G., Muench D. G.. Long-term anaerobic metabolism in root tissue.  Plant Physiology. (1993);  101 1163-1168
  • 33 Good A. G., Paetkau D. H.. Identification and characterization of hypoxicaly induced maize lactate dehydrogenase gene.  Plant Molecular Biology. (1992);  19 693-697
  • 34 Gravatt D. A., Kirby C. J.. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding.  Tree Physiology. (1998);  18 411-417
  • 35 Graves W., Kroggel M. A., Widrlechner M. P.. Photosynthesis and shoot health of five birch and four alder taxa after drought and flooding.  Journal of Environmental Horticulture.. (2002);  20 36-40
  • 36 Hegerl G. C., von Storch H., Hasselmann K., Santer B. D., Cubasch U., Jones P. D.. Detecting anthropogenic climate change with an optimal fingerprint method. Report 142, Max-Planck-Institut für Meteorologie, Hamburg. (1994)
  • 37 Heizmann U., Kreuzwieser J., Schnitzler J.-P., Brüggemann N., Rennenberg H.. Carbon transport in the xylem sap of young pedunculate oak (Quercus robur) trees.  Plant Biology. (2001);  3 132-138
  • 38 Hsu Y.-M., Tseng M.-J., Lin C.-H.. The fluctuation of carbohydrates and nitrogen compounds in flooded wax-apple trees.  Botanical Bulletin of Academia Sinica (Taipei). (1999);  40 193-198
  • 39 Huang B., Johnson J. W.. Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia.  Annals of Botany. (1995);  75 427-432
  • 40 ICPR (International Commission for the Protection of the River Rhine) .Action Plan on Flood defence. URL: http://www.iksr.org . (1998)
  • 41 IPCC (Intergovernmental Panel of Climate Change) .The regional impacts of climate change: an assessment of vulnerability. A Special Report of IPCC Working group II. Watson, R. T., Zinyowera, M. C., and Moss, R. H., eds. Port Chester, NY, USA; Cambridge University Press (1997)
  • 42 Joly C. A.. Flooding tolerance in tropical trees. Jackson, M. B., Davies, D. D., and Lambers, H., eds. Plant Life under Oxygen Deprivation. The Hague, The Netherlands; SPB Academic Publishing (1991): 23-34
  • 43 Kimmerer T. W.. Alcohol dehydrogenase and pyruvate decarboxylase activity in leaves and roots of eastern cottonwood (Populus deltoides Bartr,) and soybean (Glycine max L.).  Plant Physiology. (1987);  84 1210-1213
  • 44 Kolb R. M., Rawyler A., Braendle R.. Parameters affecting the early seedling development of four neotropical trees under oxygen deprivation stress.  Annals of Botany. (2002);  89 551-558
  • 45 Kreuzwieser J., Fürniss S., Rennenberg H.. Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species.  Plant Cell and Environment. (2002);  25 1039-1049
  • 46 Kreuzwieser J., Harren F. J. M., Laarhoven L.-J., Boamfa I., te Lintel-Hekkert S., Scheerer U., Hüglin C., Rennenberg H.. Acetaldehyde emission by the leaves of trees - correlation with physiological and environmental parameters.  Physiologia Plantarum. (2001);  113 41-49
  • 47 Kreuzwieser J., Kühnemann F., Martis A., Rennenberg H., Urban W.. Diurnal pattern of acetaldehyde emission by flooded poplar trees.  Physiologia Plantarum. (2000);  108 79-86
  • 48 Kreuzwieser J., Scheerer U., Rennenberg H.. Metabolic origin of acetaldehyde emitted by poplar (Populus tremula × P. alba) trees.  Journal of Experimental Botany. (1999);  50 757-765
  • 49 MacDonald R. C., Kimmerer T. W.. Ethanol in the stems of trees.  Physiologia Plantarum. (1991);  82 582-588
  • 50 MacDonald R. C., Kimmerer T. W.. Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides Bartr).  Plant Physiology. (1993);  102 173-179
  • 51 Marschner H.. Mineral Nutrition of Higher Plants. London; Academic Press (1995)
  • 53 Nunez-Elisea R., Schaffer B., Fisher J. B., Colls A. M., Crane J. H.. Influence of flooding on net CO2 assimilation, growth and stem anatomy of Annona species.  Annals of Botany. (1999);  84 771-780
  • 54 Parolin P.. Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains.  Environmental and Experimental Botany. (2002);  48 177-186
  • 55 Perata P., Pozueta-Romero J., Akazawa T., Yamaguchi J.. Effect of anoxia on starch breakdown in rice and wheat seeds.  Planta. (1992);  188 611-618
  • 56 Pezeshki S. R.. Responses of baldcypress (Taxodium distichum) seedlings to hypoxia: Leaf protein content, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthesis.  Photosynthetica. (1994);  30 59-68
  • 57 Pezeshki S. R., Chambers J. C.. Stomatal and photosynthetic response of sweet gum (Liquidambar styraciflua) to flooding.  Canadian Journal of Forest Research. (1985 a);  15 371-375
  • 58 Pezeshki S. R., Chambers J. C.. Response of cherrybark oak seedlings to short-term flooding.  Forest Sciences. (1985 b);  31 760-771
  • 59 Pezeshki S. R., Chambers J. C.. Variation in flood-induced stomatal and photosynthetic responses of three bottomland tree species.  Forest Sciences. (1986);  32 914-923
  • 60 Pezeshki S. R., Pardue J. H., DeLaune R. D.. Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions.  Tree Physiology. (1996);  16 453-458
  • 61 Ponnamperuma F. N.. Effects of flooding on soils. Chapter 2. Kozlowski, T. T., ed. Flooding and Plant Growth. Orlando; Academic Press (1994): 9-193
  • 62 Reece C. F., Riha S. J.. Role of root systems of Eastern larch and White spruce in response to flooding.  Plant, Cell and Environment. (1991);  14 229-234
  • 63 Roberts J. K. M., Callis J., Wemmer D., Walbot V., Jardetzky O.. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia.  Proceedings of the National Academy of Science. (1984);  81 3379-3383
  • 64 Ruschen G., Klädtke J., Külls C., Ostermann R., Schwarz O., Volk H.. Abschlussbericht der FVA Freiburg zum Untersuchungsprogramm Ökologische Flutungen im Polder Altenheim. Forstliche Versuchs- und Forschungsanstalt (FVA), Abt. Landespflege, Freiburg, 54 S. (1997)
  • 65 Sachs M. M.. Molecular genetic basis of metabolic adaptation to anoxia in maize and its possible utility for improving tolerance of crops to waterlogging. Jackson, M. B., Davies, D. D., and, Lambers, H., eds. Interacting Stresses on Plants in a Changing Climate. Berlin; Springer (1993): 375-395
  • 66 Schlueter U., Albrecht G., Wiedenroth E.-M.. Content of water soluble carbohydrates under oxygen deprivation in plants with different flooding tolerance.  Folia Geobotanica and Phytotaxonomica. (1996);  31 57-64
  • 67 Schlueter U., Crawford R. M. M.. Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L.  Journal of Experimental Botany. (2001);  52 2213-2225
  • 68 Schmull M., Thomas F. M.. Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea [Matt. ] Liebl., Fagus sylvatica L.) to waterlogging.  Plant and Soil. (2000);  225 227-242
  • 69 Schönwiese C.-D., Rapp J., Fuchs T., Denhard M.. Klimatrend Atlas Europa 1891 - 1990. Berichte des Zentrums für Umweltforschung, Nr. 20. (1993)
  • 70 Schumann A. H.. Changes in hydrological time series - a challenge for water management in Germany. In Extreme Hydrological Events: Precipitation, Floods and Droughts. Proceedings of the Joint IAMAP-IAHS Meeting Yokohama, July 1993, Japan, IAHS 213. (1993): 95-102
  • 71 Setter T. L., Ellis M., Laureles E. V., Ella E. S., Senadhira D., Mishra S. B., Sarkarung S., Datta S.. Physiology and genetics of submergence tolerance in rice.  Annals of Botany. (1997);  Suppl. A 67-77
  • 72 Siebel H. N., van Wijk M., Blom C. W. P. M.. Can tree seedlings survive increased flood levels of rivers?.  Acta Botanica Neerlandica. (1998);  47 219-230
  • 73 Sij J. W., Swanson C. A.. Effects of petiole anoxia on phloem transport in squash.  Plant Physiology. (1973);  51 368-371
  • 74 Smith A. M., ap Rees T.. Pathway of carbohydrate fermentation in the roots of marsh plants.  Planta. (1979 a);  146 327-334
  • 75 Smith A. M., ap Rees T.. Effects of anaerobiosis on carbohydrate oxidation by roots of Pisum sativum. .  Phytochemistry. (1979 b);  18 1453-1458
  • 76 Smith A. M., Kalsi G., Woolhouse H. W.. Products of fermentation in the roots of alder (Alnus Mill.).  Planta. (1984);  160 272-275
  • 77 Späth V.. Zur Hochwassertoleranz von Auenwaldbäumen.  Natur und Landschaft. (1988);  7/8 312-315
  • 78 Subbaiah C. C., Zhang J., Sachs M. M.. Involvement of intracellular calcium in anerobic gene expression and survival of maize seedlings.  Plant Physiology. (1994);  105 369-376
  • 79 Tadege M., Brändle R., Kuhlemeier C.. Anoxia tolerance in tobacco roots: effects of overexpression of pyruvatedecarboxylase.  Plant Journal. (1998);  14 327-335
  • 80 Vartapetian B. B., Jackson M. B.. Plant adaptations to anaerobic stress.  Annals of Botany. (1997);  79 3-20
  • 81 Vartapetian B. B., Poljakova L. I.. Blocking of anaerobic protein synthesis destabilizes dramatically plant mitochondrial membrane ultrastructure.  Biochemistry and Molecular Biology International. (1994);  33 405-410
  • 82 Vu J. C. V., Yelenosky G.. Photosynthetic responses of Citrus trees to soil flooding.  Physiologia Plantarum. (1991);  81 7-14
  • 83 Wagner P. A., Dreyer E.. Interactive effects of waterlogging and irradiance on the photosynthetic performance of seedlings from three oak species displaying different sensitivities (Quercus robur, Q. petraea and Q. rubra).  Annales des Sciences Forestières. (1997);  54 409-429
  • 84 Waters I., Morrell S., Greenway H., Colmer T. D.. Effects of anoxia on wheat seedlings. 2. Influence of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels.  Journal of Experimental Botany. (1991);  42 832-841
  • 85 Xia J. H., Roberts J. K. M.. Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low-oxygen environment.  Plant Physiology. (1994);  105 651-657
  • 86 Xia J. H., Saglio P. H.. Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia.  Plant Physiology. (1992);  100 40-46
  • 87 Zhou D., Solomos T.. Effect of hypoxia on sugar accumulation, respiration, activities of amylase and starch phosphorylase, and induction of alternative oxidase and invertase during storage of potato tubers (Solanum tuberosum cv. Russet Burbank) at 1 °C.  Physiologia Plantarum. (1998);  104 255-265

J. Kreuzwieser

Albert-Ludwig-Universität Freiburg
Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie

Georges-Köhler-Allee, Geb. 053/54

79110 Freiburg

Germany

Email: juergen.kreuzwieser@ctp.uni-freiburg.de

Guest Editor: F. Loreto

    >