Abstract
Protein kinases are critical components within signal transduction pathways responsible
for cellular development, growth, communication and cell death. They gained special
interest among clinicians since several types of cancer and other disorders are associated
with deregulated tyrosine kinase signalling. Recently a number of kinase inhibitors
became available for clinical use and new challenges are to find out which patients
are most likely to respond to these inhibitors. Additionally, new clinical trials
are needed to unravel the full potential of all these inhibitors. Therefore, this
article tries to summarize some mechanistical aspects of tyrosine kinase signalling
which may be a target for cancer therapy.
Key words
Receptor tyrosine Kinases - imatinib kit - mutations
References
- 1
Hanahan D, Weinberg R A.
The hallmarks of cancer.
Cell.
2000;
100
57-70
- 2
Futreal P A, Kasprzyk A, Birney E. et al .
Cancer and genomics.
Nature.
2001;
409
850-852
- 3
Blume-Jensen P, Hunter T.
Oncogenic kinase signalling.
Nature.
2001;
411
355-365
- 4
Hunter T.
The role of tyrosine phosphorylation in cell growth and disease.
Harvey Lect.
1998;
94
81-119
- 5
Hunter T.
The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in
cell growth and disease.
Philos Trans R Soc Lond B Biol Sci.
1998;
353
583-605
- 6
Schlessinger J.
Cell signaling by receptor tyrosine kinases.
Cell.
2000;
103
211-225
- 7
Hubbard S R, Till J H.
Protein tyrosine kinase structure and function.
Annu Rev Biochem.
2000;
69
373-398
- 8
Hubbard S R.
Protein tyrosine kinases: autoregulation and small-molecule inhibition.
Curr Opin Struct Biol.
2002;
12
735-741
- 9
Binns K L, Taylor P P, Sicheri F. et al .
Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region
regulates the biological and catalytic activities of Eph receptors.
Mol Cell Biol.
2000;
20
4791-4805
- 10
Schlessinger J, Lemmon M A.
SH2 and PTB domains in tyrosine kinase signaling.
Sci STKE.
2003;
2003
RE12
- 11
Pawson T.
Protein modules and signalling networks.
Nature.
1995;
373
573-580
- 12
Pawson T, Nash P.
Assembly of cell regulatory systems through protein interaction domains.
Science.
2003;
300
445-452
- 13
Kuriyan J, Cowburn D.
Modular peptide recognition domains in eukaryotic signaling.
Annu Rev Biophys Biomol Struct.
1997;
26
259-288
- 14
Pawson T, Nash P.
Protein-protein interactions define specificity in signal transduction.
Genes Dev.
2000;
14
1027-1047
- 15
Bar-Sagi D, Hall A.
Ras and Rho GTPases: a family reunion.
Cell.
2000;
103
227-238
- 16
Chong H, Vikis H G, Guan K L.
Mechanisms of regulating the Raf kinase family.
Cell Signal.
2003;
15
463-469
- 17
Margarit S M, Sondermann H, Hall B E. et al .
Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide
exchange factor SOS.
Cell.
2003;
112
685-695
- 18
Margolis B, Skolnik E Y.
Activation of Ras by receptor tyrosine kinases.
J Am Soc Nephrol.
1994;
5
1288-1299
- 19
Sun X J, Rothenberg P, Kahn C R. et al .
Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction
protein.
Nature.
1991;
352
73-77
- 20
Sun X J, Crimmins D L, Myers-MG J. et al .
Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1.
Mol Cell Biol.
1993;
13
7418-7428
- 21
Sun X J, Pons S, Wang L M. et al .
The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin
and cytokine action.
Mol Endocrinol.
1997;
11
251-262
- 22
Johnson G L, Lapadat R.
Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases.
Science.
2002;
298
1911-1912
- 23
Kyriakis J M, Avruch J.
Mammalian mitogen-activated protein kinase signal transduction pathways activated
by stress and inflammation.
Physiol Rev.
2001;
81
807-869
- 24
Karin M, Hunter T.
Transcriptional control by protein phosphorylation: signal transmission from the cell
surface to the nucleus.
Curr Biol.
1995;
5
747-757
- 25
Abe J, Kusuhara M, Ulevitch R J. et al .
The role of big MAP kinase 1 (BMK1) as a redox sensitive kinase in vascular smooth
muscle cells.
Circulation.
1996;
94
1627
- 26
Abe J, Takahashi M, Ishida M. et al .
c-Src is required for oxidative stress-mediated activation of big mitogen-activated
protein kinase 1 (BMK1).
J Biol Chem.
1997;
272
20389-20394
- 27
Allen R G, Tresini M.
Oxidative stress and gene regulation.
Free Radic Biol Med.
2000;
28
463-499
- 28
Han J, Lee J D, Bibbs L. et al .
A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.
Science.
1994;
265
808-811
- 29
Raingeaud J, Gupta S, Rogers J S. et al .
Pro-Inflammatory Cytokines and Environmental-Stress Cause P38 Mitogen-Activated Protein-Kinase
Activation by Dual Phosphorylation on Tyrosine and Threonine.
J Biol Chem.
1995;
270
7420-7426
- 30
Kietzmann T, Samoylenko A, Immenschuh S.
Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the
JNK and p38 pathways in primary cultures of rat hepatocytes.
J Biol Chem.
2003;
278
17927-17936
- 31
Kim H K, Kim J W, Zilberstein A. et al .
PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation
on tyrosine residues 783 and 1254.
Cell.
1991;
65
435-441
- 32
Czech M P.
PIP2 and PIP3: complex roles at the cell surface.
Cell.
2000;
100
603-606
- 33
Soderling T R, Stull J T.
Structure and regulation of calcium/calmodulin-dependent protein kinases.
Chem Rev.
2001;
101
2341-2352
- 34
Shepherd P R, Nave B T, Rincon J. et al .
Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and
phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose
metabolism.
Diabetologia.
1997;
40
1172-1177
- 35
Vanhaesebroeck B, Alessi D R.
The PI3K-PDK1 connection: more than just a road to PKB.
Biochem J.
2000;
346
561-576
- 36
Meier R, Hemmings B A.
Regulation of protein kinase B.
J Recept Signal Transduct Res.
1999;
19
121-128
- 37
Rameh L E, Cantley L C.
The role of phosphoinositide 3-kinase lipid products in cell function.
J Biol Chem.
1999;
274
8347-8350
- 38
Toker A, Newton A C.
Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2
site.
J Biol Chem.
2000;
275
8271-8274
- 39
Hodgkinson C P, Sale E M, Sale G J.
Characterization of PDK2 activity against protein kinase B gamma.
Biochemistry.
2002;
41
10351-10359
- 40
Du K, Montminy M.
CREB is a regulatory target for the protein kinase Akt/PKB.
J Biol Chem.
1998;
273
32377-32379
- 41
Kops G J, de Ruiter N D, Vries-Smits A M. et al .
Direct control of the Forkhead transcription factor AFX by protein kinase B.
Nature.
1999;
398
630-634
- 42
Kitaura J, Asai K, Maeda-Yamamoto M. et al .
Aktdependent cytokine production in mast cells.
J Exp Med.
2000;
192
729-740
- 43
Datta S R, Brunet A, Greenberg M E.
Cellular survival: a play in three Akts.
Genes Dev.
1999;
13
2905-2927
- 44
Yaish P, Gazit A, Gilon C. et al .
Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors.
Science.
1988;
242
933-935
- 45
Gazit A, Yaish P, Gilon C. et al .
Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors.
J Med Chem.
1989;
32
2344-2352
- 46
O’Dwyer M E, Mauro M J, Druker B J.
STI571 as a targeted therapy for CML.
Cancer Invest.
2003;
21
429-438
- 47
Ross D M, Hughes T P.
Cancer treatment with kinase inhibitors: what have we learnt from imatinib?.
Br J Cancer.
2004;
90
12-19
- 48
Blume-Jensen P, Jiang G, Hyman R. et al .
Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3’-kinase
is essential for male fertility.
Nat Genet.
2000;
24
157-162
- 49
Ashman L K.
The biology of stem cell factor and its receptor C-kit.
Int J Biochem Cell Biol.
1999;
31
1037-1051
- 50
Nakahara M, Isozaki K, Hirota S. et al .
A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors.
Gastroenterology.
1998;
115
1090-1095
- 51
Nishida T, Hirota S, Taniguchi M. et al .
Familial gastrointestinal stromal tumours with germline mutation of the KIT gene.
Nat Genet.
1998;
19
323-324
- 52
Taniguchi M, Nishida T, Hirota S. et al .
Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors.
Cancer Res.
1999;
59
4297-4300
- 53
Hirota S, Nishida T, Isozaki K. et al .
Familial gastrointestinal stromal tumors associated with dysphagia and novel type
germline mutation of KIT gene.
Gastroenterology.
2002;
122
1493-1499
- 54
Bapsy P P, Prabhash K, Babu K G. et al .
Gastrointestinal stromal tumour-a paradigm shift in management of solid tumours.
J Assoc Physicians India.
2003;
51
801-804
- 55
Duffaud F, Blay J Y.
Gastrointestinal stromal tumors: biology and treatment.
Oncology.
2003;
65
187-197
- 56
Kozlowski M, Larose L, Lee F. et al .
SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine
569 in the c-Kit juxtamembrane domain.
Mol Cell Biol.
1998;
18
2089-2099
- 57
Lennartsson J, Blume-Jensen P, Hermanson M. et al .
Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit
mediated activation of the Ras/MAP kinase pathway and c-fos induction.
Oncogene.
1999;
18
5546-5553
- 58
Hubbard S R, Mohammadi M, Schlessinger J.
Autoregulatory mechanisms in protein-tyrosine kinases.
J Biol Chem.
1998;
273
11987-11990
- 59
Wollberg P, Lennartsson J, Gottfridsson E. et al .
The adapter protein APS associates with the multifunctional docking sites Tyr-568
and Tyr-936 in c-Kit.
Biochem J.
2003;
370
1033-1038
- 60
Blume-Jensen P, Janknecht R, Hunter T.
The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent
Akt-mediated phosphorylation of Bad on Ser136.
Curr Biol.
1998;
8
779-782
- 61
Timokhina I, Kissel H, Stella G. et al .
Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1
and JNK activation in mast cell proliferation.
EMBO J.
1998;
17
6250-6262
- 62
Sommer G, Agosti V, Ehlers I. et al .
Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor
tyrosine kinase.
Proc Natl Acad Sci USA.
2003;
100
6706-6711
Dr. T. Kietzmann
Institut für Biochemie und Molekulare Zellbiologie
Humboldtallee 23
37073 Göttingen, Germany
Fax: ++ 49/5 51/39 59 60
Email: tkietzm@gwdg.de