Subscribe to RSS
DOI: 10.1055/s-2004-813464
© Georg Thieme Verlag KG Stuttgart · New York
Signal Transducing Kinases and Cancer
Signaltransduktionskinasen und Tumorentstehung This study was supported by the Deutsche Forschungsgemeinschaft SFB 402 Teilprojekt A1 and GRK 335Publication History
Publication Date:
23 August 2004 (online)

Abstract
Protein kinases are critical components within signal transduction pathways responsible for cellular development, growth, communication and cell death. They gained special interest among clinicians since several types of cancer and other disorders are associated with deregulated tyrosine kinase signalling. Recently a number of kinase inhibitors became available for clinical use and new challenges are to find out which patients are most likely to respond to these inhibitors. Additionally, new clinical trials are needed to unravel the full potential of all these inhibitors. Therefore, this article tries to summarize some mechanistical aspects of tyrosine kinase signalling which may be a target for cancer therapy.
Key words
Receptor tyrosine Kinases - imatinib kit - mutations
References
- 1
Hanahan D, Weinberg R A.
The hallmarks of cancer.
Cell.
2000;
100
57-70
MissingFormLabel
- 2
Futreal P A, Kasprzyk A, Birney E. et al .
Cancer and genomics.
Nature.
2001;
409
850-852
MissingFormLabel
- 3
Blume-Jensen P, Hunter T.
Oncogenic kinase signalling.
Nature.
2001;
411
355-365
MissingFormLabel
- 4
Hunter T.
The role of tyrosine phosphorylation in cell growth and disease.
Harvey Lect.
1998;
94
81-119
MissingFormLabel
- 5
Hunter T.
The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in
cell growth and disease.
Philos Trans R Soc Lond B Biol Sci.
1998;
353
583-605
MissingFormLabel
- 6
Schlessinger J.
Cell signaling by receptor tyrosine kinases.
Cell.
2000;
103
211-225
MissingFormLabel
- 7
Hubbard S R, Till J H.
Protein tyrosine kinase structure and function.
Annu Rev Biochem.
2000;
69
373-398
MissingFormLabel
- 8
Hubbard S R.
Protein tyrosine kinases: autoregulation and small-molecule inhibition.
Curr Opin Struct Biol.
2002;
12
735-741
MissingFormLabel
- 9
Binns K L, Taylor P P, Sicheri F. et al .
Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region
regulates the biological and catalytic activities of Eph receptors.
Mol Cell Biol.
2000;
20
4791-4805
MissingFormLabel
- 10
Schlessinger J, Lemmon M A.
SH2 and PTB domains in tyrosine kinase signaling.
Sci STKE.
2003;
2003
RE12
MissingFormLabel
- 11
Pawson T.
Protein modules and signalling networks.
Nature.
1995;
373
573-580
MissingFormLabel
- 12
Pawson T, Nash P.
Assembly of cell regulatory systems through protein interaction domains.
Science.
2003;
300
445-452
MissingFormLabel
- 13
Kuriyan J, Cowburn D.
Modular peptide recognition domains in eukaryotic signaling.
Annu Rev Biophys Biomol Struct.
1997;
26
259-288
MissingFormLabel
- 14
Pawson T, Nash P.
Protein-protein interactions define specificity in signal transduction.
Genes Dev.
2000;
14
1027-1047
MissingFormLabel
- 15
Bar-Sagi D, Hall A.
Ras and Rho GTPases: a family reunion.
Cell.
2000;
103
227-238
MissingFormLabel
- 16
Chong H, Vikis H G, Guan K L.
Mechanisms of regulating the Raf kinase family.
Cell Signal.
2003;
15
463-469
MissingFormLabel
- 17
Margarit S M, Sondermann H, Hall B E. et al .
Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide
exchange factor SOS.
Cell.
2003;
112
685-695
MissingFormLabel
- 18
Margolis B, Skolnik E Y.
Activation of Ras by receptor tyrosine kinases.
J Am Soc Nephrol.
1994;
5
1288-1299
MissingFormLabel
- 19
Sun X J, Rothenberg P, Kahn C R. et al .
Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction
protein.
Nature.
1991;
352
73-77
MissingFormLabel
- 20
Sun X J, Crimmins D L, Myers-MG J. et al .
Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1.
Mol Cell Biol.
1993;
13
7418-7428
MissingFormLabel
- 21
Sun X J, Pons S, Wang L M. et al .
The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin
and cytokine action.
Mol Endocrinol.
1997;
11
251-262
MissingFormLabel
- 22
Johnson G L, Lapadat R.
Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases.
Science.
2002;
298
1911-1912
MissingFormLabel
- 23
Kyriakis J M, Avruch J.
Mammalian mitogen-activated protein kinase signal transduction pathways activated
by stress and inflammation.
Physiol Rev.
2001;
81
807-869
MissingFormLabel
- 24
Karin M, Hunter T.
Transcriptional control by protein phosphorylation: signal transmission from the cell
surface to the nucleus.
Curr Biol.
1995;
5
747-757
MissingFormLabel
- 25
Abe J, Kusuhara M, Ulevitch R J. et al .
The role of big MAP kinase 1 (BMK1) as a redox sensitive kinase in vascular smooth
muscle cells.
Circulation.
1996;
94
1627
MissingFormLabel
- 26
Abe J, Takahashi M, Ishida M. et al .
c-Src is required for oxidative stress-mediated activation of big mitogen-activated
protein kinase 1 (BMK1).
J Biol Chem.
1997;
272
20389-20394
MissingFormLabel
- 27
Allen R G, Tresini M.
Oxidative stress and gene regulation.
Free Radic Biol Med.
2000;
28
463-499
MissingFormLabel
- 28
Han J, Lee J D, Bibbs L. et al .
A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.
Science.
1994;
265
808-811
MissingFormLabel
- 29
Raingeaud J, Gupta S, Rogers J S. et al .
Pro-Inflammatory Cytokines and Environmental-Stress Cause P38 Mitogen-Activated Protein-Kinase
Activation by Dual Phosphorylation on Tyrosine and Threonine.
J Biol Chem.
1995;
270
7420-7426
MissingFormLabel
- 30
Kietzmann T, Samoylenko A, Immenschuh S.
Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the
JNK and p38 pathways in primary cultures of rat hepatocytes.
J Biol Chem.
2003;
278
17927-17936
MissingFormLabel
- 31
Kim H K, Kim J W, Zilberstein A. et al .
PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation
on tyrosine residues 783 and 1254.
Cell.
1991;
65
435-441
MissingFormLabel
- 32
Czech M P.
PIP2 and PIP3: complex roles at the cell surface.
Cell.
2000;
100
603-606
MissingFormLabel
- 33
Soderling T R, Stull J T.
Structure and regulation of calcium/calmodulin-dependent protein kinases.
Chem Rev.
2001;
101
2341-2352
MissingFormLabel
- 34
Shepherd P R, Nave B T, Rincon J. et al .
Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and
phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose
metabolism.
Diabetologia.
1997;
40
1172-1177
MissingFormLabel
- 35
Vanhaesebroeck B, Alessi D R.
The PI3K-PDK1 connection: more than just a road to PKB.
Biochem J.
2000;
346
561-576
MissingFormLabel
- 36
Meier R, Hemmings B A.
Regulation of protein kinase B.
J Recept Signal Transduct Res.
1999;
19
121-128
MissingFormLabel
- 37
Rameh L E, Cantley L C.
The role of phosphoinositide 3-kinase lipid products in cell function.
J Biol Chem.
1999;
274
8347-8350
MissingFormLabel
- 38
Toker A, Newton A C.
Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2
site.
J Biol Chem.
2000;
275
8271-8274
MissingFormLabel
- 39
Hodgkinson C P, Sale E M, Sale G J.
Characterization of PDK2 activity against protein kinase B gamma.
Biochemistry.
2002;
41
10351-10359
MissingFormLabel
- 40
Du K, Montminy M.
CREB is a regulatory target for the protein kinase Akt/PKB.
J Biol Chem.
1998;
273
32377-32379
MissingFormLabel
- 41
Kops G J, de Ruiter N D, Vries-Smits A M. et al .
Direct control of the Forkhead transcription factor AFX by protein kinase B.
Nature.
1999;
398
630-634
MissingFormLabel
- 42
Kitaura J, Asai K, Maeda-Yamamoto M. et al .
Aktdependent cytokine production in mast cells.
J Exp Med.
2000;
192
729-740
MissingFormLabel
- 43
Datta S R, Brunet A, Greenberg M E.
Cellular survival: a play in three Akts.
Genes Dev.
1999;
13
2905-2927
MissingFormLabel
- 44
Yaish P, Gazit A, Gilon C. et al .
Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors.
Science.
1988;
242
933-935
MissingFormLabel
- 45
Gazit A, Yaish P, Gilon C. et al .
Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors.
J Med Chem.
1989;
32
2344-2352
MissingFormLabel
- 46
O’Dwyer M E, Mauro M J, Druker B J.
STI571 as a targeted therapy for CML.
Cancer Invest.
2003;
21
429-438
MissingFormLabel
- 47
Ross D M, Hughes T P.
Cancer treatment with kinase inhibitors: what have we learnt from imatinib?.
Br J Cancer.
2004;
90
12-19
MissingFormLabel
- 48
Blume-Jensen P, Jiang G, Hyman R. et al .
Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3’-kinase
is essential for male fertility.
Nat Genet.
2000;
24
157-162
MissingFormLabel
- 49
Ashman L K.
The biology of stem cell factor and its receptor C-kit.
Int J Biochem Cell Biol.
1999;
31
1037-1051
MissingFormLabel
- 50
Nakahara M, Isozaki K, Hirota S. et al .
A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors.
Gastroenterology.
1998;
115
1090-1095
MissingFormLabel
- 51
Nishida T, Hirota S, Taniguchi M. et al .
Familial gastrointestinal stromal tumours with germline mutation of the KIT gene.
Nat Genet.
1998;
19
323-324
MissingFormLabel
- 52
Taniguchi M, Nishida T, Hirota S. et al .
Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors.
Cancer Res.
1999;
59
4297-4300
MissingFormLabel
- 53
Hirota S, Nishida T, Isozaki K. et al .
Familial gastrointestinal stromal tumors associated with dysphagia and novel type
germline mutation of KIT gene.
Gastroenterology.
2002;
122
1493-1499
MissingFormLabel
- 54
Bapsy P P, Prabhash K, Babu K G. et al .
Gastrointestinal stromal tumour-a paradigm shift in management of solid tumours.
J Assoc Physicians India.
2003;
51
801-804
MissingFormLabel
- 55
Duffaud F, Blay J Y.
Gastrointestinal stromal tumors: biology and treatment.
Oncology.
2003;
65
187-197
MissingFormLabel
- 56
Kozlowski M, Larose L, Lee F. et al .
SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine
569 in the c-Kit juxtamembrane domain.
Mol Cell Biol.
1998;
18
2089-2099
MissingFormLabel
- 57
Lennartsson J, Blume-Jensen P, Hermanson M. et al .
Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit
mediated activation of the Ras/MAP kinase pathway and c-fos induction.
Oncogene.
1999;
18
5546-5553
MissingFormLabel
- 58
Hubbard S R, Mohammadi M, Schlessinger J.
Autoregulatory mechanisms in protein-tyrosine kinases.
J Biol Chem.
1998;
273
11987-11990
MissingFormLabel
- 59
Wollberg P, Lennartsson J, Gottfridsson E. et al .
The adapter protein APS associates with the multifunctional docking sites Tyr-568
and Tyr-936 in c-Kit.
Biochem J.
2003;
370
1033-1038
MissingFormLabel
- 60
Blume-Jensen P, Janknecht R, Hunter T.
The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent
Akt-mediated phosphorylation of Bad on Ser136.
Curr Biol.
1998;
8
779-782
MissingFormLabel
- 61
Timokhina I, Kissel H, Stella G. et al .
Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1
and JNK activation in mast cell proliferation.
EMBO J.
1998;
17
6250-6262
MissingFormLabel
- 62
Sommer G, Agosti V, Ehlers I. et al .
Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor
tyrosine kinase.
Proc Natl Acad Sci USA.
2003;
100
6706-6711
MissingFormLabel
Dr. T. Kietzmann
Institut für Biochemie und Molekulare Zellbiologie
Humboldtallee 23
37073 Göttingen, Germany
Fax: ++ 49/5 51/39 59 60
Email: tkietzm@gwdg.de