TumorDiagnostik & Therapie 2004; 25(4): 177-182
DOI: 10.1055/s-2004-813464
Symposium Report

© Georg Thieme Verlag KG Stuttgart · New York

Signal Transducing Kinases and Cancer

Signaltransduktionskinasen und TumorentstehungT. Kietzmann1
  • 1Institut für Biochemie und Molekulare Zellbiologie, Göttingen
This study was supported by the Deutsche Forschungsgemeinschaft SFB 402 Teilprojekt A1 and GRK 335
Further Information

Publication History

Publication Date:
23 August 2004 (online)

Abstract

Protein kinases are critical components within signal transduction pathways responsible for cellular development, growth, communication and cell death. They gained special interest among clinicians since several types of cancer and other disorders are associated with deregulated tyrosine kinase signalling. Recently a number of kinase inhibitors became available for clinical use and new challenges are to find out which patients are most likely to respond to these inhibitors. Additionally, new clinical trials are needed to unravel the full potential of all these inhibitors. Therefore, this article tries to summarize some mechanistical aspects of tyrosine kinase signalling which may be a target for cancer therapy.

References

  • 1 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 2 Futreal P A, Kasprzyk A, Birney E. et al . Cancer and genomics.  Nature. 2001;  409 850-852
  • 3 Blume-Jensen P, Hunter T. Oncogenic kinase signalling.  Nature. 2001;  411 355-365
  • 4 Hunter T. The role of tyrosine phosphorylation in cell growth and disease.  Harvey Lect. 1998;  94 81-119
  • 5 Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease.  Philos Trans R Soc Lond B Biol Sci. 1998;  353 583-605
  • 6 Schlessinger J. Cell signaling by receptor tyrosine kinases.  Cell. 2000;  103 211-225
  • 7 Hubbard S R, Till J H. Protein tyrosine kinase structure and function.  Annu Rev Biochem. 2000;  69 373-398
  • 8 Hubbard S R. Protein tyrosine kinases: autoregulation and small-molecule inhibition.  Curr Opin Struct Biol. 2002;  12 735-741
  • 9 Binns K L, Taylor P P, Sicheri F. et al . Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors.  Mol Cell Biol. 2000;  20 4791-4805
  • 10 Schlessinger J, Lemmon M A. SH2 and PTB domains in tyrosine kinase signaling.  Sci STKE. 2003;  2003 RE12
  • 11 Pawson T. Protein modules and signalling networks.  Nature. 1995;  373 573-580
  • 12 Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains.  Science. 2003;  300 445-452
  • 13 Kuriyan J, Cowburn D. Modular peptide recognition domains in eukaryotic signaling.  Annu Rev Biophys Biomol Struct. 1997;  26 259-288
  • 14 Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction.  Genes Dev. 2000;  14 1027-1047
  • 15 Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion.  Cell. 2000;  103 227-238
  • 16 Chong H, Vikis H G, Guan K L. Mechanisms of regulating the Raf kinase family.  Cell Signal. 2003;  15 463-469
  • 17 Margarit S M, Sondermann H, Hall B E. et al . Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS.  Cell. 2003;  112 685-695
  • 18 Margolis B, Skolnik E Y. Activation of Ras by receptor tyrosine kinases.  J Am Soc Nephrol. 1994;  5 1288-1299
  • 19 Sun X J, Rothenberg P, Kahn C R. et al . Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein.  Nature. 1991;  352 73-77
  • 20 Sun X J, Crimmins D L, Myers-MG J. et al . Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1.  Mol Cell Biol. 1993;  13 7418-7428
  • 21 Sun X J, Pons S, Wang L M. et al . The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action.  Mol Endocrinol. 1997;  11 251-262
  • 22 Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases.  Science. 2002;  298 1911-1912
  • 23 Kyriakis J M, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.  Physiol Rev. 2001;  81 807-869
  • 24 Karin M, Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus.  Curr Biol. 1995;  5 747-757
  • 25 Abe J, Kusuhara M, Ulevitch R J. et al . The role of big MAP kinase 1 (BMK1) as a redox sensitive kinase in vascular smooth muscle cells.  Circulation. 1996;  94 1627
  • 26 Abe J, Takahashi M, Ishida M. et al . c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1 (BMK1).  J Biol Chem. 1997;  272 20389-20394
  • 27 Allen R G, Tresini M. Oxidative stress and gene regulation.  Free Radic Biol Med. 2000;  28 463-499
  • 28 Han J, Lee J D, Bibbs L. et al . A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.  Science. 1994;  265 808-811
  • 29 Raingeaud J, Gupta S, Rogers J S. et al . Pro-Inflammatory Cytokines and Environmental-Stress Cause P38 Mitogen-Activated Protein-Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine.  J Biol Chem. 1995;  270 7420-7426
  • 30 Kietzmann T, Samoylenko A, Immenschuh S. Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the JNK and p38 pathways in primary cultures of rat hepatocytes.  J Biol Chem. 2003;  278 17927-17936
  • 31 Kim H K, Kim J W, Zilberstein A. et al . PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254.  Cell. 1991;  65 435-441
  • 32 Czech M P. PIP2 and PIP3: complex roles at the cell surface.  Cell. 2000;  100 603-606
  • 33 Soderling T R, Stull J T. Structure and regulation of calcium/calmodulin-dependent protein kinases.  Chem Rev. 2001;  101 2341-2352
  • 34 Shepherd P R, Nave B T, Rincon J. et al . Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose metabolism.  Diabetologia. 1997;  40 1172-1177
  • 35 Vanhaesebroeck B, Alessi D R. The PI3K-PDK1 connection: more than just a road to PKB.  Biochem J. 2000;  346 561-576
  • 36 Meier R, Hemmings B A. Regulation of protein kinase B.  J Recept Signal Transduct Res. 1999;  19 121-128
  • 37 Rameh L E, Cantley L C. The role of phosphoinositide 3-kinase lipid products in cell function.  J Biol Chem. 1999;  274 8347-8350
  • 38 Toker A, Newton A C. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site.  J Biol Chem. 2000;  275 8271-8274
  • 39 Hodgkinson C P, Sale E M, Sale G J. Characterization of PDK2 activity against protein kinase B gamma.  Biochemistry. 2002;  41 10351-10359
  • 40 Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB.  J Biol Chem. 1998;  273 32377-32379
  • 41 Kops G J, de Ruiter N D, Vries-Smits A M. et al . Direct control of the Forkhead transcription factor AFX by protein kinase B.  Nature. 1999;  398 630-634
  • 42 Kitaura J, Asai K, Maeda-Yamamoto M. et al . Aktdependent cytokine production in mast cells.  J Exp Med. 2000;  192 729-740
  • 43 Datta S R, Brunet A, Greenberg M E. Cellular survival: a play in three Akts.  Genes Dev. 1999;  13 2905-2927
  • 44 Yaish P, Gazit A, Gilon C. et al . Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors.  Science. 1988;  242 933-935
  • 45 Gazit A, Yaish P, Gilon C. et al . Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors.  J Med Chem. 1989;  32 2344-2352
  • 46 O’Dwyer M E, Mauro M J, Druker B J. STI571 as a targeted therapy for CML.  Cancer Invest. 2003;  21 429-438
  • 47 Ross D M, Hughes T P. Cancer treatment with kinase inhibitors: what have we learnt from imatinib?.  Br J Cancer. 2004;  90 12-19
  • 48 Blume-Jensen P, Jiang G, Hyman R. et al . Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3’-kinase is essential for male fertility.  Nat Genet. 2000;  24 157-162
  • 49 Ashman L K. The biology of stem cell factor and its receptor C-kit.  Int J Biochem Cell Biol. 1999;  31 1037-1051
  • 50 Nakahara M, Isozaki K, Hirota S. et al . A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors.  Gastroenterology. 1998;  115 1090-1095
  • 51 Nishida T, Hirota S, Taniguchi M. et al . Familial gastrointestinal stromal tumours with germline mutation of the KIT gene.  Nat Genet. 1998;  19 323-324
  • 52 Taniguchi M, Nishida T, Hirota S. et al . Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors.  Cancer Res. 1999;  59 4297-4300
  • 53 Hirota S, Nishida T, Isozaki K. et al . Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene.  Gastroenterology. 2002;  122 1493-1499
  • 54 Bapsy P P, Prabhash K, Babu K G. et al . Gastrointestinal stromal tumour-a paradigm shift in management of solid tumours.  J Assoc Physicians India. 2003;  51 801-804
  • 55 Duffaud F, Blay J Y. Gastrointestinal stromal tumors: biology and treatment.  Oncology. 2003;  65 187-197
  • 56 Kozlowski M, Larose L, Lee F. et al . SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain.  Mol Cell Biol. 1998;  18 2089-2099
  • 57 Lennartsson J, Blume-Jensen P, Hermanson M. et al . Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction.  Oncogene. 1999;  18 5546-5553
  • 58 Hubbard S R, Mohammadi M, Schlessinger J. Autoregulatory mechanisms in protein-tyrosine kinases.  J Biol Chem. 1998;  273 11987-11990
  • 59 Wollberg P, Lennartsson J, Gottfridsson E. et al . The adapter protein APS associates with the multifunctional docking sites Tyr-568 and Tyr-936 in c-Kit.  Biochem J. 2003;  370 1033-1038
  • 60 Blume-Jensen P, Janknecht R, Hunter T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136.  Curr Biol. 1998;  8 779-782
  • 61 Timokhina I, Kissel H, Stella G. et al . Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1 and JNK activation in mast cell proliferation.  EMBO J. 1998;  17 6250-6262
  • 62 Sommer G, Agosti V, Ehlers I. et al . Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase.  Proc Natl Acad Sci USA. 2003;  100 6706-6711

Dr. T. Kietzmann

Institut für Biochemie und Molekulare Zellbiologie

Humboldtallee 23

37073 Göttingen, Germany

Fax: ++ 49/5 51/39 59 60

Email: tkietzm@gwdg.de

    >