Zusammenfassung
Tryptophan, eine essenzielle Aminosäure und Bestandteil von Proteinen, ist auch Substrat für 2 wichtige biochemische Stoffwechselwege: Die Bildung des Neurotransmitters Serotonin (5-Hydroxytryptamin) durch die Tryptophan-(5)-Hydroxylase sowie die Bildung von Kynureninderivaten und Nikotinamidadenindinukleotiden über die Enzyme Tryptophanpyrrolase (Tryptophan-2,3-Dioxygenase, TDO) und Indolamin-2,3-Dioxygenase (IDO). TDO ist in Leberzellen lokalisiert, während IDO von einer Vielzahl von Zellen nach Induktion durch das Zytokin Interferon-γ exprimiert wird. Der durch Induktion von IDO durchgeführte Tryptophanabbau ist einerseits Teil des antimikrobiellen und antiproliferativen Repertoirs von Zellen, kann aber auch zur Suppression der T-Zellantwort beitragen. Für die Abschätzung einer Aktivierung der IDO in vivo kann das Verhältnis von Kynurenin zu Tryptophan (= Kyn/Trp) bestimmt und gleichzeitig zu Immunaktivierungsparametern wie Neopterin in Beziehung gesetzt werden. Verstärkter Tryptophankatabolismus wird bei Erkrankungen beobachtet, die mit einer zellulären (= Th1-Typ) Immunantwort einhergehen, wie Virusinfektionen (z. B. mit dem humanen Immunodefizienz Virus = HIV), Autoimmunkrankheiten, aber auch Krebserkrankungen und während einer Schwangerschaft. Bei diesen Prozessen könnte der Tryptophanabbau eine Rolle bei der Entwicklung einer Immundefizienz spielen. Außerdem kann besonders bei chronischen Krankheiten die reduzierte Verfügbarkeit des freien Tryptophan im Serum auch zu einer unzureichenden Synthese von Serotonin führen. So können serotonerge Funktionen gestört werden und der gesteigerte Tryptophanabbau zur Entstehung von neuropsychiatrischen Symptomen beitragen. Störungen des Serotoninstoffwechsels sind in der Pathogenese von Depressionen von besonderer Bedeutung. Analog dazu wurde z. B. ein Zusammenhang zwischen verstärktem Tryptophanabbau und verminderter Lebensqualität bei Patienten mit malignen Erkrankungen nachgewiesen. Die Aktivierung der IDO kann eine Verbindung zwischen dem immunologischen Netzwerk und neuroendokrinen Funktionen mit weit reichenden Konsequenzen für den psychischen Status von Patienten darstellen. Diese Zusammenhänge könnten auch eine neue Basis für ein besseres Verständnis für die Entstehung von Gemütsveränderungen bei chronisch Kranken darstellen.
Abstract
The essential amino acid tryptophan is constituent of proteins and also substrate for two important metabolic pathways, namely the formation of neurotransmitter serotonin (5-hydroxytryptamine) by tryptophan-(5)-hydroxylase and the production of kynurenine derivatives and nicotinamide-adenine-dinucleotides via enzymes tryptophan pyrrolase (tryptophan 2,3-dioxygenase, TDO) and indoleamine 2,3-diooxygenase (IDO). TDO is localized in liver, whereas IDO is expressed in a variety of cells upon induction with Th1-type cytokine interferon-y. IDO-induced tryptophan degradation is part of the antimicrobial and antiproliferative repertoire of cells, accordingly it also can contribute to the suppression of T-cell response. Enhanced tryptophan catabolism coinciding with immune activation is commonly observed during diseases, which go along with cell-mediated (= Th1-type) immune response, such as virus infections including human immunodeficiency virus infection, autoimmune disorders and cancer and also during pregnancy. In these conditions, tryptophan degradation may be involved in the development of immunodeficiency, however, the limited availability of serum tryptophan may also lead to an insufficient biosynthesis of serotonin especially in chronic situations. Consequently serotonergic functions can be disturbed, and accelerated tryptophan catabolism may thus contribute to neuropsychiatric symptoms in patients. Disturbed serotonin metabolism is of particular relevance in the pathogenesis of depression, and an association between enhanced tryptophan degradation and reduced quality of life has already been observed in patients with malignant diseases. In conclusion, activation of IDO may represent a link between the immunologic network and neuroendocrine functions with far-reaching consequences for the neuropsychiatrie status of patients. Results provide a basis for a better understanding of the development of mood disturbances in patients with chronic diseases.
Schlüsselwörter
Tryptophan - Serotonin - Interferon-γ - Indolamin-(2,3)-dioxygenase - Depression
Key words
Tryptophan - serotonin - interferon-γ - indoleamine (2,3)-dioxygenase - depression
Literatur
1
Brown R R.
Metabolism and biology of tryptophan. Some clinical implications.
Adv Exp Med Biol.
1996;
398
15-25
2
Moroni F.
Tryptophan metabolism and brain function: focus of kynurenine and other indole metabolites.
Eur J Pharm.
1999;
375
87-100
3
Taylor M W, Feng G S.
Relationship between interferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism.
FASEB J.
1991;
5
2516-2522
4
Knox W E.
The regulation of tryptophan pyrrolase activity by tryptophan.
Adv Enzyme Regul.
1966;
4
287-297
5
Takikawa O, Yoshida R, Kido R, Hayaishi O.
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase.
J Biol Chem.
1986;
261
3648-3653
6
Byrne G I, Lehmann L K, Kirschbaum J G, Borden E C, Lee C M, Brown R R.
Induction of tryptophan degradation in vitro and in vivo: a gamma-interferon-stimulated activity.
J Interferon Res.
1986;
6
389-396
7
Werner E R, Bitterlich G, Fuchs D, Hausen A, Reibnegger G, Szabo G, Dierich M P, Wachter H.
Human macrophages degrade tryptophan upon induction by interferon-gamma.
Life Sci.
1987;
41
273-280
8
Widner B, Werner E R, Schennach H, Wachter H, Fuchs D.
Simultaneous measurement of serum tryptophan and kynurenine by HPLC.
Clin Chem.
1997;
43
2424-2426
9
Romagnani S.
Cytokines and chemoattractants in allergic inflammation.
Mol Immunol.
2002;
38
881-885
10
Brown R R, Lee C M, Kohler P C, Hank J A, Storer B E, Sondel P M.
Altered tryptophan and neopterin metabolism in cancer patients treated with recombinant interleukin 2.
Cancer Res.
1989;
49
4941-4944
11
Werner-Felmayer G, Werner E R, Fuchs D, Hausen A, Reibnegger G, Wachter H.
Characteristics of interferon induced tryptophan metabolism in human cells in vitro.
Biochim Biophys Acta.
1989;
1012
140-147
12
Werner-Felmayer G, Werner E R, Fuchs D, Hausen A, Reibnegger G, Wachter H.
Neopterin formation and tryptophan degradation by a human myelomonocytic cell line (THP-1).
Cancer Res.
1990;
50
2863-2867
13
Ozaki Y, Edelstein M P, Duch D S.
The actions of interferon and antiinflammatory agents of induction of indoleamine 2,3-dioxygenase in human peripheral blood monocytes.
Biochem Biophys Res Commun.
1987;
144
1147-1153
14
Fuchs D, Möller A A, Reibnegger G, Stöckle E, Werner E R, Wachter H.
Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms.
J Acquir Immune Defic Syndr.
1990;
3
873-876
15
Widner B, Ledochowski M, Fuchs D.
Interferon-gamma-induced tryptophan degradation: neuropsychiatry and immunological consequences.
Curr Drug Metabol.
2000;
1
193-204
16
Pfefferkorn E R.
Interferon-γ blocks the growth of Toxoplasma ghondii in human fibroblasts by inducing the host cells to degrade tryptophan.
Proc Natl Acad Sci (USA).
1986;
81
908-912
17
Pfefferkorn E R, Eckel M, Rebhun S.
Interferon-gamma suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan.
Mol Biochem Parasitol.
1986;
20
215-224
18
Byrne G I, Lehmann L K, Landry G J.
Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells.
Infect Immun.
1986;
53
347-351
19
Bodaghi B, Goureau O, Zipeto D, Laurent L, Virelizier J L, Michelson S.
Role of IFN-gamma-induced indoleamine 2,3 dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells.
J Immunol.
1999;
162
957-964
20
Maza L M de la, Peterson E M.
Dependence of the in vitro antiproliferative activity of recombinant human gamma-interferon on the concentration of tryptophan in culture media.
Cancer Res.
1988;
48
346-350
21
Ozaki Y, Edelstein M P, Duch D S.
Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon-gamma.
Proc Natl Acad Sci (USA).
1988;
85
1242-1246
22
Carlin J M, Borden E C, Byrne G I.
Enhancement of indoleamine 2,3-dioxygenase activity in cancer patients receiving interferon-beta Ser.
J Interferon Res.
1989;
9
167-173
23
Roberts J, Schmid F A, Rosenfeld H J.
Biologic and antineoplastic effects of enzyme-mediated in vivo depletion of L-glutamine, L-tryptophan, and L-histidine.
Cancer Treat Rep.
1979;
63
1045-1054
24
Woolley P V, Dion R L, Bono V H.
Effects of tryptophan deprivation on L1210 cells in culture.
Cancer Res.
1974;
34
1010-1014
25
Fuchs D, Malkovsky M, Reibnegger G, Werner E R, Forni G, Wachter H.
Endogenous release of interferon-gamma and diminished response of peripheral blood mononuclear cells to antigenic stimulation.
Immunol Lett.
1989;
23
103-108
26
Munn D H, Shafizadeh E, Attwood J T, Bondarev I, Pashine A, Mellor A L.
Inhibition of T-cell proliferation by macrophage tryptophan catabolism.
J Exp Med.
1999;
189
1663-1672
27 Mellor A L, Munn D, Chandler P, Keskin D, Johnson T, Marshall B, Jhaver K, Baban B. Tryptophan catabolism and T-cell responses. Padova, Italy; 10th International Meeting on Tryptophan Research 2002, June 27 - 30
28
Fuchs D, Hausen A, Reibnegger G, Werner E R, Dierich M P, Wachter H.
Neopterin as a marker for activated cell-mediated immunity: Application in HIV infection.
Immunol Today.
1988;
9
150-155
29
Fahey J L, Taylor J M, Detels R, Hofmann B, Melmed R, Nishanian P, Giorgi J V.
The prognostic value of cellular and serologic markers in infection with human immunodeficiency virus type 1.
N Engl J Med.
1990;
322
166-172
30
Fuchs D, Spira T J, Hausen A, Reibnegger G, Werner E R, Werner-Felmayer G, Wachter H.
Neopterin as a predictive marker for disease progression in human immunodeficiency virus type 1 infection.
Clin Chem.
1989;
35
1746-1749
31
Eriksson T, Lidberg L.
Decreased plasma ratio of tryptophan to competing large neutral amino acids in human immunodeficiency virus type 1 infected subjects: possible implications for development of neuro-psychiatric disorders.
J Neural Transm.
1996;
103
157-164
32
Fuchs D, Möller A A, Reibnegger G, Werner E R, Werner-Felmayer G, Dierich M P, Wachter H.
Increased endogenous interferon-gamma and neopterin correlate with increased degradation of tryptophan in human immunodeficiency virus type 1 infection.
Immunol Lett.
1991;
28
207-212
33
Wiegand M, Möller A A, Schreiber W, Krieg J C, Fuchs D, Wachter H, Holsboer F.
Nocturnal sleep EEG in patients wit HIV infection.
Eur Arch Psychiatry Clin Neurosci.
1991;
240
153-158
34
Gisslén M, Fuchs D, Svennerholm B, Hagberg L.
Cerebrospinal fluid viral load, intrathecal immunoactivation, and cerebrospinal fluid monocytic cell count in HIV-1 infection.
J Acquir Immune Defic Syndr.
1999;
21
271-276
35 Zangerle R, Widner B, Quirchmair G, Neurauter G, Sarcletti M, Fuchs D. Effective antiretroviral therapy reduces degradation of tryptophan in patients with HIV-1 infection. Clin Immunol 2004 (im Druck)
36
Judd F K, Cockram A M, Komiti A, Mijch A M, Hoy J, Bell R.
Depressive symptoms reduced in individuals with HIV/AIDS treated with highly active antiretroviral therapy: a longitudinal study.
Aust N Z J Psychiatry.
2000;
34
1015-1021
37
Murr C, Gerlach D, Widner B, Dierich M P, Fuchs D.
Neopterin production and tryptophan degradation in humans infected by Streptococcus pyogenes.
Med Microbiol Immunol.
2001;
189
161-163
38
Widner B, Sepp N, Kowald E, Ortner U, Wirleitner B, Fritsch P, Baier-Bitterlich G, Fuchs D.
Enhanced tryptophan degradation in systemic lupus erythematosus.
Immunobiology.
2000;
201
621-630
39
Denz H, Fuchs D, Huber H, Nachbaur D, Reibnegger G, Thaler J, Werner E R, Wachter H.
Correlation between neopterin, interferon-gamma and haemoglobin in patients with haematological disorders.
Eur J Haematol.
1990;
44
186-189
40
Iwagaki H, Hizuta A, Tanaka N, Orita K.
Decreased serum tryptophan in patients with cancer cachexia correlates with increased serum neopterin.
Immunol Invest.
1995;
24
467-478
41
Huang A, Fuchs D, Widner B, Glover C, Henderson D C, Allen-Mersh T G.
Tryptophan decrease in advanced colorectal cancer correlates with immune activation and impaired quality of life.
Brit J Cancer.
2002;
86
1691-1696
42
Widner B, Leblhuber F, Fuchs D.
Increased neopterin production and tryptophan degradation in advanced Parkinson's disease.
J Neural Transm.
2002;
109
181-189
43
Leblhuber F, Walli J, Jellinger K, Tilz G P, Widner B, Laccone F, Fuchs D.
Activated immune system in patients with Huntington's disease.
Clin Chem Lab Med.
1998;
36
747-750
44
Widner B, Leblhuber F, Walli J, Tilz G P, Demel U, Fuchs D.
Tryptophan degradation and immune activation in Alzheimer's disease.
J Neural Transmission.
2000;
107
343-353
45
Owens M J, Nemeroff C B.
Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter.
Clin Chem.
1994;
40
288-295
46
Briley M, Moret C.
Neurobiological mechanisms involved in antidepressant therapies.
Clin Neuropharmacol.
1993;
16
387-400
47
Williams W A, Shoaf S E, Hommer D, Rawlings R, Linnoila M.
Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers.
J Neurochem.
1999;
72
1641-1647
48
Oldendorf W H.
Stereospecificity of blood-brain barrier permeability to amino acids.
Am J Physiol.
1973;
224
967-969
49
Maes M, Scharpe S, Meltzer H Y, Okayli G, Bosmans E, D'Hondt P, Bossche B V Van den, Cosyns P.
Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response.
Psychiatry Res.
1994;
54
143-160
50
Sandyk R.
L-tryptophan in neuropsychiatric disorders: a review.
Int J Neurosci.
1992;
67
127-144
51
Giusti R M, Maloney E M, Hanchard B, Morgan O SC, Steinberg S M, Wachter H, Williams E, Cranston B, Fuchs D, Manns A.
Differential patterns of serum biomarkers of immune activation in human T-cell lymphotropic virus type I-associated myelopathy/tropical spastic paresis and adult T-cell leukemia/lymphoma.
Cancer Epidemiol Biomarkers Prevent.
1986;
5
699-709
52
Murr C, Widner B, Sperner-Unterweger B, Ledochowski M, Schubert C, Fuchs D.
Immune reaction links disease progression in cancer patients with depression.
Medical Hypotheses.
2000;
55
137-140
53
Brown R R, Ozaki Y, Datta S P, Borden E C, Sondel P M, Malone D G.
Implications of interferon-induced tryptophan catabolism in cancer, auto-immune diseases and AIDS.
Adv Exp Med Biol.
1991;
294
425-435
54 Frick B, Schroecksnadel K, Neurauter G, Leblhuber F, Fuchs D. Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin Biochem (im Druck)
55
Murr C, Ledochowski M, Fuchs D.
Chronic immune stimulation may link ischemic heart disease with depression.
Circulation.
2002;
105 (14)
83e
Prof. Dr. Dietmar Fuchs
Institut für Medizinische Chemie und Biochemie
Fritz-Pregl-Straße 3
6020 Innsbruck · Austria
Email: dietmar.fuchs@uibk.ac.at