Klinische Neurophysiologie 2004; 35(1): 45-50
DOI: 10.1055/s-2003-814838
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Transkranielle Magnetstimulation im Kindesalter

Transcranial Magnetic Stimulation in ChildhoodV.  Mall1 , S.  Berweck2 , F.  Heinen2
  • 1Zentrum für Kinderheilkunde und Jugendmedizin, Klinik II: Neuropädiatrie und Muskelerkrankungen,Universität Freiburg
  • 2Abteilung für Pädiatrische Neurologie und Entwicklungsneurologie, Dr. von Haunersches Kinderspital der Universität München
Further Information

Publication History

Publication Date:
02 March 2004 (online)

Zusammenfasung

Durch die Transkranielle Magnetstimulation (TMS) gelingt die schmerzfreie, nicht invasive Stimulation des menschlichen Gehirns. Die Methode hat sich in der Erwachsenenmedizin als Methode der Wahl zur Untersuchung des kortikospinalen Systems etabliert und wird zunehmend auch im Kindesalter eingesetzt. Neben dem Einsatz in der klinischen Routine wurden Studien zur Reifungsdynamik, der motorischen Schwelle, der zentralmotorischen Latenz, der intrakortikalen Inhibition, der interhemispheralen Inhibition und zur postexzitatorischen Silent Period durchgeführt. Des Weiteren konnte die TMS im Kindesalter einen wesentlichen Beitrag zur Pathophysiologie frühkindlicher Hirnschädigungen, zu Tic-Störungen, zum Attention-Deficit-Hyperactivity-Syndrome (ADHS) und zur prächirurgischen Epilepsiediagnostik leisten.

Abstract

Using transcranial magnetic (TMS) stimulation it is possible stimulate the human brain painless non-invasively. TMS is established for the examination of the corticospinal system in adults and is increasingly used in children. Studies showing the maturation of central motor conduction time, the intracortical inhibition, interhemispheral inhibition and the postexcitatory silent period. Furthermore, TMS studies increased our understanding of the pathophysiology of cerebral palsy, attention deficit syndrome, tic disorders and is increasingly used in presurgical diagnostic in epilepsy.

Literatur

  • 1 Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex.  Lancet. 1985;  I 1106-1107
  • 2 Ben-Ari Y, Tseeb V, Raggozzino D, Khazipov R, Gaiarsa J L. gamma-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life.  Prog Brain Res. 1994;  102 261-273
  • 3 Brooks-Kayal A R, Pritchett D B. Developmental changes in human gamma-aminobutyric acid - A receptor subunit composition.  Ann Neurol. 1993;  34 687-693
  • 4 Chugani D C, Muzik O, Juhasz C, Janisse J J, Ager J, Chugani H T. Postnatal maturation of human GABAA receptors measured with positron emission tomography.  Ann Neurol. 2001;  49 618-626
  • 5 Day B L, Dressler D, Maertens de Noordhout A, Marsden C D, Rothwell J C, Thompson P D. Magnetic stimulation of the human brain can activate different neuronal elements when the magnetic field direction is reversed.  J Physiol (Lond). 1988;  401 46-52
  • 6 Eyre J A, Kerr A M, Miller S, O'Sullivan M C, Ramesh V. Neurophysiological observations on corticospinal projections to the upper limb in subjects with Rett syndrome.  J Neurol Neurosurg Psychiatr. 1990;  53 874-879
  • 7 Eyre J A, Miller S, Clowry G J, Conway E A, Watts C. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres.  Brain. 2000;  123 51-64
  • 8 Eyre J A, Miller S, Ramesh V. Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways.  J Physiol (Lond). 1991;  434 441-452
  • 9 Fietzek U M, Heinen F, Berweck S, Maute S, Hufschmidt A, Schulte-Mönting J. et al . Development of the corticospinal system and hand motor function: central conduction times and motor performance tests.  Dev Med Child Neurol. 2000;  42 220-227
  • 10 Hallett M. Transcranial magnetic stimulation: a useful tool for clinical neurophysiology.  Ann Neurol. 1996;  40 344-345
  • 11 Hallett M. Functional reorganization after lesions of the human brain: studies with transcranial magnetic stimulation.  Rev Neurol (Paris). 2001;  157 822-826
  • 12 Heinen F, Glocker F X, Fietzek U M, Meyer B-U, Lücking C H, Korinthenberg R. Absence of transcallosal inhibition following focal magnetic stimulation in pre-school children.  Ann Neurol. 1998;  43 608-612
  • 13 Heinen F, Kirschner J, Fietzek U M, Glocker F X, Mall V, Korinthenberg R. Absence of transcallosal inhibition in adolescents with diplegic cerebral palsy.  Musc Nerv. 1999;  22 255-257
  • 14 Heinen F, Korinthenberg R. Does transcranial magnetic stimulation allow early diagnosis of Rett Syndrome?.  Neuropediatrics. 1996;  27 223-224
  • 15 Kastrup O, Leonhardt G, Kurthen M, Hufnagel A. Cortical motor reorganization following early brain damage and hemispherectomy demonstrated by transcranial magnetic stimulation.  Clin Neurophysiol. 2000;  111 1346-1352
  • 16 Macdonell R A, Jackson G D, Curatolo J M, Abbott D F, Berkovic S F, Carey L M. et al . Motor cortex localization using functional MRI and transcranial magnetic stimulation.  Neurology. 1999;  53 1462-1467
  • 17 Magistris M R, Rösler K M, Truffert A, Landis T, Hess C W. A clinical study of motor evoked potentials using a triple stimulation technique.  Brain. 1999;  122 265-279
  • 18 Magistris M R, Rösler K M, Truffert A, Myers J P. Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials.  Brain. 1998;  121 437-450
  • 19 Mall V, Glocker F X, Fietzek U M, Heinen F, Berweck S, Korinthenberg R. et al . Inhibitory conditioning stimulus in transcranial magnetic stimulation reduces the number of excited spinal motor neurons.  Clinical Neurophysiology. 2001;  112 1810-1813
  • 20 Merton P A, Morton H B. Stimulation of the cerebral cortex in the intact human subject.  Nature. 1980;  285 227-232
  • 21 Moll G H, Heinrich H, Trott G, Wirth S, Rothenberger A. Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate.  Neurosci Lett. 2000;  284 121-125
  • 22 Moll G H, Heinrich H, Trott G E, Wirth S, Bock N, Rothenberger A. Children with comorbid attention-deficit-hyperactivity disorder and tic disorder: evidence for additive inhibitory deficits within the motor system.  Ann Neurol. 2001;  49 393-396
  • 23 Müller K, Hömberg V, Lenard H-G. Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections.  Electroencephalogr Clin Neurophysiol. 1991;  81 63-70
  • 24 Shimizu T, Nariai T, Maehara T, Hino T, Komori T, Shimizu H. et al . Enhanced motor cortical excitability in the unaffected hemisphere after hemispherectomy.  Neuroreport. 2000;  11 3077-3084
  • 25 Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krageloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study.  Brain. 2002;  125 2222-2237
  • 26 Wassermann E M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5 - 7, 1996.  Electroencephalogr Clin Neurophysiol. 1998;  108 1-16
  • 27 Ziemann U, Steinhoff B J, Tergau F, Paulus W. Transcranial magnetic stimulation: its current role in epilepsy research.  Epilepsy Res. 1998;  30 11-30

Dr. Volker Mall

Zentrum für Kinderheilkunde und Jugendmedizin, Klinik II: Neuropädiatrie und Muskelerkrankungen

Mathildenstraße 1

79106 Freiburg

Email: mall@kikli.ukl.uni-freiburg.de

    >