Int J Sports Med 2004; 25(1): 50-55
DOI: 10.1055/s-2003-45237
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Body Size and V·O2peak: A New Perspective?

D.  J.  McCann1
  • 1Department of Exercise Science, Gonzaga University, Spokane, WA, USA
Further Information

Publication History

Accepted after revision: May 20, 2003

Publication Date:
29 January 2004 (online)

Abstract

The purpose of this paper was to show how dimensional analysis and biological similarity theory can be used to define and derive extensive (size-dependent) and intensive (size-independent) variables. The method was then used to analyze the peak rate of oxygen consumption (V·O2 peak) data of children, adolescents, and adults to determine if size-independent increases in V·O2 peak occur during growth and development. The results indicated growth and development is accompanied by a substantial increase in size-independent V·O2 peak, which was associated with improvements in size-independent peak heart rate (HR peak). When differences in fat free mass (FFM) were considered, size-independent HR peak was similar in boys and girls within each age-group, but was greater in men than in women. In contrast, when differences in FFM were accounted for, size-independent peak oxygen pulse (O2P peak) was independent of age, although males tended to have greater values than females at all ages. Because O2P peak is proportional to the product of stroke volume (SV) and arterial mixed-venous oxygen difference (a-vO2 peak), when differences in FFM were considered, the size-independent nature of O2P peak indicated the combined effects changes in SV peak and (a-vO 2peak) played a secondary role in improving aerobic capacity. In conclusion, during normal growth and development improvement in HR peak, not stroke volume and arterial mixed-venous oxygen difference, appears to increase aerobic capacity.

References

  • 1 Armstrong N, Welsman J R. Aerobic fitness. In: Armstrong, N and van Mechelen (eds) Paediatric Exercise Science and Medicine, W. Oxford: Oxford University Press 2000: 173-182
  • 2 Åstrand P O. Experimental Studies of Physical Working Capacity in Relation to Sex and Age. Copenhagen: Munksgaard 1952
  • 3 Åstrand P O, Rodahl K. Textbook of Work Physiology. Physiological Basis of Exercise. New York: McGraw-Hill 1986: 367-388
  • 4 Batterham A M, Vanderburgh P M, Mahar M T, Jackson A S. Modeling the influence of body size on V·O2peak: effects of model choice and body composition.  J Appl Physiol. 1999;  87 1317-1325
  • 5 Batterham A M, George K P, White G, Sharma S, McKenna W. Scaling cardiac structural data by body dimensions: a review of theory, practice, and problems.  Int J Sports Med. 1999;  20 495-502
  • 6 Baxter-Jones A, Goldstein H, Helms P. The development of aerobic power in young athletes.  J Appl Physiol. 1993;  75 1160-1167
  • 7 Beunen G P, Rogers D M, Wynarowska B, Malina R M. Longitudinal study of ontogenetic allometry of oxygen uptake in boys and girls grouped by maturity status.  Annals Human Biol. 1997;  24 33-43
  • 8 Beunen G, Baxter-Jones A DG, Mirwald R L, Thomis M, Lefevre J, Malina R M, Bailey D A. Intraindividual allometric development of aerobic power in 8- to 16-year-old boys.  Med Sci Sports Exerc. 2002;  33 503-510
  • 9 Brown J H, West G B, Enquist B J. Scaling in biology: patterns and processes, causes and consequences. In: Brown JH, and West GB (eds.) Scaling in Biology 2000: 1-24
  • 10 Darveau C A, Suarez R K, Andrews R D, Hochachka P W. Allometric cascade as an unifying principle of body mass effects on metabolism.  Nature. 2002;  417 166-170
  • 11 Dodds P S, Rothman D H, Weitz J S. Re-examination of the ”3/4-law“ of metabolism.  J Theor Biol. 2001;  209 9-27
  • 12 Eisenmann J C, Pivarnik J M, Malina R M. Scaling peak V·O2 to body mass in young male and female distance runners.  J Appl Physiol. 2001;  90 2172-2180
  • 13 Heusner A A. Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact?.  Resp Physiol. 1982;  48 1-12
  • 14 Heusner A A. Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity.  Resp Physiol. 1982;  48 13-25
  • 15 Heusner A A. Biological similitude: statistical and functional relationships in comparative physiology.  Am J Physiol. 1984;  246 R839-R845
  • 16 Heusner A A. Body size and energy metabolism.  Ann Rev Nutr. 1991;  5 267-293
  • 17 Heusner A A. Size and power in mammals.  J Exp Biol. 1991;  160 25-54
  • 18 Hill A V. The dimensions of animals and their muscular dynamics.  Sci Pro. 1950;  38 209-230
  • 19 Kleiber M. Body size and metabolism.  Hilgaria. 1932;  6 315-353
  • 20 Kleiber M. Body size and metabolic rate.  Physiol Rev. 1947;  27 511-541
  • 21 Lambert R, Teissier G. Théorie de la similitude biologique.  Anns Physiol. 1927;  3 212-246
  • 22 Massey B S. Units, Dimensional Analysis and Physical Similarity. London: Van Nostrand Reinhold Company 1971
  • 23 McCann D J, Adams W C. A theory for normalizing resting V·O2 for differences in body size.  Med Sci Sports Exerc. 2002;  34 1382-1390
  • 24 McCann D J, Adams W C. A dimensional paradigm for identifying the size independent cost of walking.  Med Sci Sports Exerc. 2002;  34 1009-1017
  • 25 McCann D J, Adams W C. The size-independent oxygen cost of running.  Med Sci Sports Exerc. 2003;  35 (in press)
  • 26 Nevill A M, Holder R L, Baxter-Jones A, Round J M, Jones D A. Modeling developmental changes in strength and aerobic power in children.  J Appl Physiol. 1998;  84 963-970
  • 27 Robinson S. Experimental studies of physical fitness in relation to age.  Int Z Angew Physiol. 1938;  10 251-323
  • 28 Rogers D M, Olson B L, Wilmore J. Scaling for the V·O2-to-body size relationship among children and adults.  J Appl Physiol. 1995;  79 958-967
  • 29 Rowland T W. Cardiovascular function. In: Armstrong N and van Mechelen (eds) Paediatric Exercise Science and Medicine. W Oxford: Oxford University Press 2000: 163-172
  • 30 Rowland T W, Goff D, Martel L, Ferrone L, Kline G. Normalization of maximal cardiovascular variables for body size in premenarcheal girls.  Pediatric Cardiol. 2000;  21 429-432
  • 31 Schmidt-Nielsen K. Scaling: Why Is Animal Size So Important. Cambridge: Cambridge University Press 1984
  • 32 Thomis M, Rogers D M, Beunen G P, Woynarowska B, Malina R M. Allometric relationship between body size and peak V·O2 relative to age at menarche.  Annals Human Biol. 2000;  27 623-633
  • 33 Weibel E R. The pitfalls of power laws.  Nature. 2002;  417 131-132
  • 34 West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology.  Sci. 1997;  276 122-126
  • 35 Welsman J R, Armstrong N. Interpreting exercise performance data in relation to body size. In: Armstrong, N and van Mechelen (eds) Paediatric Exercise Science and Medicine, W. Oxford: Oxford University Press 2000: 3-9

1 Quantities and variables are denoted by italic type, and dimensions by bold sans-serif as prescribed in the National Institute of Standards and Technology Special Publication 811: Guide for the use of the International System of Units (SI), 1995 Edition, published by the United States Department of Commerce Technology Administration.

D. J. McCann, Ph. D.

Department of Exercise Science · Gonzaga University

Spokane · WA 99258-0004 · USA ·

Phone: +1 (509) 323-3487

Fax: +1 (509) 323-5869

Email: mccann@gonzaga.edu

    >