References
<A NAME="RU21603ST-1">1</A> For example, see:
Taniguchi N.
Honke K.
Fukuda M.
Handbook of Glycosyltransferases and Related Genes
Springer-Verlag:
2002.
p.205
<A NAME="RU21603ST-2">2</A>
Stapleton A.
Stround MR.
Hakomori S.
Stamm WE.
Infect. Immun.
1998,
66:
3856
<A NAME="RU21603ST-3">3</A>
Compain P.
Martin OR.
Bioorg. Med. Chem.
2001,
9:
3077
<A NAME="RU21603ST-4A">4a</A>
König WA.
Hahn H.
Rathman R.
Hass W.
Keckeisen A.
Hagenmaier H.
Bormann C.
Dehler W.
Kurth R.
Zähner H.
Liebigs Ann. Chem.
1986,
407
<A NAME="RU21603ST-4B">4b</A>
Saksena AK.
Lovey RG.
Girijavallabhan VM.
Guzik H.
Ganguly AK.
Tetrahedron Lett.
1993,
34:
3267
<A NAME="RU21603ST-5">5</A>
Dahn U.
Hagenmeier H.
Höhne H.
König WA.
Wolf G.
Zähner H.
Arch. Microbiol.
1976,
107:
143
<A NAME="RU21603ST-6A">6a</A>
Vassilev VP.
Uchiyama T.
Kajimoto T.
Wong CH.
Tetrahedron Lett.
1995,
36:
4081
<A NAME="RU21603ST-6B">6b</A>
Vassilev VP.
Uchiyama T.
Kajimoto T.
Wong CH.
Tetrahedron Lett.
1995,
36:
5063
<A NAME="RU21603ST-6C">6c</A>
Shibata K.
Shingu K.
Vassilev VP.
Nishide K.
Fujita T.
Node M.
Kajimoto T.
Wong CH.
Tetrahedron Lett.
1996,
37:
2791
<A NAME="RU21603ST-6D">6d</A>
Fujii M.
Miura T.
Kajimoto T.
Ida Y.
Synlett
2000,
1046
<A NAME="RU21603ST-6E">6e</A>
Nishide K.
Shibata K.
Fujita T.
Kajimoto T.
Wong CH.
Heterocycles
2000,
52:
1191
<A NAME="RU21603ST-6F">6f</A>
Miura T.
Kajimoto T.
Chirality
2001,
577
<A NAME="RU21603ST-7">7</A>
Miura T.
Fujii M.
Shingu K.
Koshimizu I.
Naganoma J.
Kajimoto T.
Ida Y.
Tetrahedron Lett.
1998,
39:
7313
<A NAME="RU21603ST-8A">8a</A> The absolute stereochemistry of the a-carbon was determined to be l-configuration by the observation that 5a and 5b were not substrates of the d-amino acid oxidase but those of the l-amino acid oxidase. The erythro- and threo-configuration was determined by converting to the corresponding oxazolidones treating
with ethyl chlorocarbonate in 1 M aq NaOH. See also:
Saeed A.
Yong DW.
Tetrahedron
1992,
48:
2507
<A NAME="RU21603ST-8B">8b</A>
Kaneko T.
Inui T.
Bull. Chem. Soc. Jpn.
1961,
82:
1075
<A NAME="RU21603ST-9">9</A>
Udodong UE.
Rao CS.
Fraser-Reid B.
Tetrahedron Lett.
1992,
48:
4713
<A NAME="RU21603ST-10">10</A>
Compound 13a: 1H NMR (CDCl3): δ = 1.14 (d, 3 H, J = 6.5 Hz, Me-6), 1.69 (m, 2 H), 2.00, 2.08, 2.17 (s, each 3 H, 3 × Ac), 2.13 (m,
2 H), 3.41 (dt, 1 H, J = 10.0, 6.5 Hz, A part of AB type), 3.69 (dt, 1 H, J = 10.0 Hz, B part of AB type), 4.16 (br q, 1 H, J = 6.5 Hz, H-5), 4.95-5.02 (m, 2 H), 5.05 (d, 1 H, J = 4.0 Hz, H-1), 5.11 (dd, 1 H, J = 4.0, 10.5 Hz, H-2), 5.30 (dd, 1 H, J = 1.0, 3.5 Hz, H-4), 5.35 (dd, 1 H, J = 3.5, 10.5 Hz, H-3), 5.81 (ddt, 1 H, J = 10.5, 17.0, 7.5 Hz). 13C NMR (CDCl3): δ = 15.8, 20.6 × 2, 20.7, 28.4, 30.0, 64.2, 67.5, 68.0, 68.2, 71.1, 96.0, 115.0,
137.7, 170.0, 170.4, 170.6.
<A NAME="RU21603ST-11">11</A>
Compound 13b: 1H NMR (CDCl3): δ = 1.23 (d, 3 H, J = 6.5 Hz, Me-6), 1.70 (m, 2 H), 2.00, 2.06, 2.18 (s, each 3 H, 3 × Ac), 2.11 (m,
2 H), 3.49 (m, 1 H), 3.81 (br q, 1 H, J = 6.5 Hz, H-5), 3.92 (dt, 1 H, J = 9.5, 6.0 Hz), 4.43 (d, 1 H, J = 7.5, H-1), 4.95-5.05 (m, 2 H), 5.02 (dd, 1 H, J = 3.0, 10.5 Hz, H-3), 5.20 (dd, 1 H, J = 7.0, 10.5 Hz, H-2), 5.24 (br d, 1 H, J = 3.0 Hz, H-4), 5.80 (ddt, 1 H, J = 10.0, 17.0, 6.5 Hz).
<A NAME="RU21603ST-12">12</A>
Ichikawa Y.
Sim MM.
Wong CH.
J. Org. Chem.
1992,
57:
2943
<A NAME="RU21603ST-13">13</A>
Iversen T.
Bundle DR.
J. Org. Chem.
1981,
46:
5389
<A NAME="RU21603ST-14">14</A>
Carlsen PHJ.
Katzuki T.
Martin VS.
Sharpless KB.
J. Org. Chem.
1981,
46:
3936
<A NAME="RU21603ST-15">15</A>
Compound 20a: 1H NMR (CD3OD): δ = 0.99 (d, 3 H, J = 6.5 Hz, Me-6), 1.80 (m, 2 H), 1.85, 1.92, 2.04 (s, each 3 H, 3 × Ac), 2.30 (t,
2 H, J = 7.5 Hz), 3.33 (dt, 1 H, J = 10.0, 6.0 Hz), 3.60 (dt, 1 H, J = 10.0, 6.0 Hz), 4.01 (dd, 1 H, J = 9.0, 15.0 Hz, H-γ), 4.07 (br q, 1 H, J = 6.5 Hz, H-5), 4.14 (dd, 1 H, J = 3.0, 15.0 Hz, H-γ′), 4.16 (m, 1 H, H-β), 4.53 (d, 1 H, J = 5.5 Hz, H-α), 4.88 (d, 1 H, J = 3.5 Hz, H-1), 4.94 (dd, 1 H, J = 3.5, 11.0 Hz, H-2 or H-3), 5.05, 5.08 (d, each 1 H, AB type, J = 13.0 Hz, CH
2
Ph), 5.15 (dd, 1 H, J = 1.0, 3.5 Hz, H-4), 5.20 (dd, 1 H, J = 3.5, 11.0 Hz, H-2 or H-3), 7.25 (m, 5 H, Ph), 7.53 (s, 1 H, guanine H-8). FAB MS:
Calcd for C32H40N6O13: 716.3. Found: 717.4.
<A NAME="RU21603ST-16">16</A>
Compound 20b: 1H NMR (CD3OD): δ = 1.06 (d, 3 H, J = 6.5 Hz, Me-6), 1.76 (m, 2 H), 1.84, 1.94, 2.04 (s, each 3 H, 3 × Ac), 2.25 (t,
2 H, J = 8.0 Hz), 3.45 (dt, 1 H, J = 10.0, 6.0 Hz), 3.74 (dt, 1 H, J = 10.0, 6.0 Hz), 3.81 (br q, 1 H, J = 6.5 Hz, H-5), 4.03 (dd, 1 H, J = 8.5, 14.0 Hz, H-γ), 4.16 (dd, 1 H, J = 4.0, 14.0 Hz, H-γ′), 4.19 (m, 1 H, H-β), 4.44 (d, 1 H, J = 7.5 Hz, H-1), 4.51 (d, 1 H, J = 5.5 Hz, H-α), 4.94 (dd, 1 H, J = 7.5, 10.5 Hz, H-2), 4.98 (dd, 1 H, J = 3.5, 10.5 Hz, H-3), 5.06, 5.09 (d, each 1 H, AB type, J = 12.5 Hz, CH
2
Ph), 5.11 (dd, 1 H, J = 1.0, 3.5 Hz, H-4), 7.30 (m, 5 H, Ph), 7.56 (s, 1 H, guanine H-8). FAB MS: Calcd
for C32H40N6O13: 716.3. Found: 717.4.
<A NAME="RU21603ST-17">17</A>
Compound 2a: 1H NMR (D2O): δ = 1.01 (d, 3 H, J = 6.5 Hz, Me-6), 1.73 (m, 2 H), 2.24 (m, 2 H), 3.34 (m, 1 H), 3.54 (m, 1 H), 3.59
(dd, 1 H, J = 4.0, 10.0 Hz, H-2), 3.62 (br d, 1 H, J = 3.5 Hz, H-4), 3.70 (dd, 1 H, J = 3.5, 10.0 Hz, H-3), 3.88 (br q, 1 H, J = 6.5 Hz, H-5), 3.91 (dd, 1 H, J = 8.0, 14.5 Hz, H-γ), 4.04 (dd, 1 H, J = 6.0, 14.5 Hz, H-γ′), 4.18 (d, 1 H, J = 3.0 Hz, H-α), 4.37 (m, 1 H, H-β), 4.71 (d, 1 H, J = 4.0 Hz, H-1), 7.63 (s, 1 H, guanine H-8). MALDI-TOF MS: Calcd for C19H28N6O10 + Na+: 523.2. Found: 523.1.
<A NAME="RU21603ST-18">18</A>
Compound 2b: 1H NMR (D2O): δ = 1.01 (d, 1 H, J = 6.5 Hz, Me-6), 1.72 (m, 2 H), 2.23 (m, 2 H), 3.24 (dd, 1 H, J = 7.5, 10.0 Hz, H-2), 3.38 (dd, 1 H, J = 3.5, 10.0 Hz, H-3), 3.46 (dt, 1 H, J = 10.5, 6.5 Hz, A part of AB type), 3.48-3.55 (m, 2 H, H-4 and H-5), 3.72 (dt, 1
H, J = 10.5, 6.5 Hz, B part of AB type), 3.95-4.12 (m, 3 H, H-β and H2-γ), 4.13 (d, 1 H, J = 7.5 Hz, H-1), 4.19 (d, 1 H, J = 5.5 Hz, H-α), 7.62 (s, 1 H, guanine H-8). FAB MS: Calcd for C19H28N6O10 + Na+: 523.2. Found: 523.2.
<A NAME="RU21603ST-19">19</A>
Nishihara S.
Nakazato M.
Kudo T.
Kimura H.
Ando T.
Narimatsu H.
Biochem. Biophys. Res. Commun.
1993,
190:
42
<A NAME="RU21603ST-20">20</A>
The assay was performed in 50 mM cacodylate buffer (pH 6.8) containing 5 mM ATP, 10
mM l-Fuc, 25 mM MnCl2, 15 mM acceptor substrate, Galβ1-3GlcNAcβ1-3Galβ1-4Glc-2-aminobenzamide (for FUT
3) or Galβ1-4GlcNAcβ1-3Galβ1-4Glc-2-aminobenzamide (for FUT 6), 75 µM donor substrate
GDP-Fuc, and 2a or 2b (0 mM for the positive control; 0.75 mM, and 7.5 mM respectively for the inhibitory
assay). After incubation at 37 °C for 2 h in the presence of the fucosyltransferases
(FUT 3 or FUT 6), the enzyme reaction was terminated by heating at 97 °C for 5 min
followed by adding H2O. After centrifugation of the reaction mixture, in order to detect the fucosylated
products and estimate their amounts, each supernatant was filtered and subjected to
reverse-phase HPLC analysis on TSK-gel ODS-80Ts QA column (4.6 × 250 mm; Tosoh, Tokyo,
Japan) and eluted with 20 mM ammonium acetate buffer (pH 4.0) containing 7% MeOH at
flow rate of 1.0 mL/min at
50 °C, with monitoring by a fluorescence spectrophotometer (JASCO FP-920; Nihon Bunkoh,
Tokyo, Japan).