Zusammenfassung
Das Wachstum von malignen Tumoren der Brustdrüse kann durch Östrogene und Wachstumsfaktoren reguliert werden. Die zelluläre Reaktion auf diese Stimuli wird durch Östrogenrezeptoren und Rezeptor-Tyrosinkinasen vermittelt. Diese beiden Signalwege wurden bis vor kurzer Zeit nur isoliert betrachtet, allerdings häufen sich Hinweise darauf, dass ihre Interaktion nicht die Ausnahme, sondern ein Prinzip ihrer Wirkung ist. Ein Beispiel für die mögliche klinische Bedeutung dieser Wechselwirkung ist der Einfluss einer HER-2/neu-Überexpression auf die Wirkung des Antiöstrogens Tamoxifen bei der Behandlung von Patientinnen mit Mammakarzinom. Umgekehrt gibt es Hinweise darauf, dass die „nichtgenomischen“ Effekte von Östradiol die Wirksamkeit von antitumoralen Substanzen hemmen können, die gegen die Rezeptor-Tyrosinkinase-Signaltransduktion gerichtet sind. In dieser Übersicht werden neue Erkenntnisse über die molekularen Mechanismen der Interaktion zwischen zellulärer Östradiolantwort und Wachstumsfaktor-Signaltransduktion ebenso dargestellt wie deren Bedeutung für die Wirkung antitumoraler Substanzen, die in der Therapie des Mammakarzinoms eingesetzt werden.
Abstract
Growth of breast cancer cells is regulated by estrogens and growth factors. Cellular response to these stimuli is mediated by estrogen receptors and receptor tyrosine kinases. Originally both pathways were considered as independent signaling mechanisms. Now there is evidence for a broad cross-talk between these signal transduction pathways. The relationship between overexpression of HER-2/neu receptor tyrosine kinase and tamoxifen resistance is a possible example for the clinical relevance of this signaling cross-talk. Additionally, nongenomic effects of estrogens are able to interfere with the action of antitumoral substances directed against dysregulated receptor tyrosine kinases by activation of kinases downstream the receptor. Novel insights into the molecular mechanisms underlying the cross-talk between both signaling mechanisms and their impact on the efficacy of antitumoral substances directed against these pathways are reviewed.
Schlüsselwörter
Östrogene - Östrogenrezeptoren - Wachstumsfaktoren - Rezeptor-Tyrosinkinasen - Antiöstrogene
Key words
Estrogens - estrogen receptor - growth factor - receptor tyrosine kinases - antiestrogens
Literatur
1
Horwitz K B, Freidenberg G R.
Growth inhibition and increase of insulin receptors in antiestrogen-resistant T47DCO human breast cancer cells by progestins: implications for endocrine therapies.
Cancer Res.
1985;
45
167-173
2
Lange C A, Richer J K, Horwitz K B. et al .
Progesterone primes breast cancer cells for cross-talk with proliferative or antiproliferative signals.
Mol Endocrinol.
1999;
13
829-836
3
Lippman M E, Dickson R B.
Mechanisms of normal and malignant breast epithelial growth regulation.
J Steroid Biochem.
1989;
34
107-121
4
Suo Z, Risberg B, Karlsson M G, Villman K. et al .
The expression of EGFR family ligands in breast carcinomas.
Int J Surg Pathol.
2002;
10
91-99
5
Chrysogelos S A, Dickson R B.
EGF receptor expression, regulation, and function in breast cancer.
Breast Cancer Res Treat.
1994;
29
29-40
6
Zwick E, Bange J, Ullrich A. et al .
Receptor tyrosine kinase signalling as a target for cancer intervention strategies.
Endocr Relat Cancer.
2001;
8
161-173
7
Webb P, Nguyen P, Valentine C, Kushner P. et al .
The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions.
Mol Endocrinology.
1999;
13
1673-1685
8
Kato S, Endoh H, Chambon P.
Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase.
Science.
1995;
270
1491-1494
9
Beato M.
Gene regulation by steroid hormones.
Cell.
1989;
56
335-344
10
Gustafsson J-Å.
Estrogen receptor beta - a new dimension in estrogen mechanism of action.
J Endocrinol.
1999;
163
379-383
11
Mc Donnel D P, Nawaz Z, O'Malley B W.
In situ distinction between steroid receptor binding and transactivation at a target gene.
Mol Cell Biol.
1991;
11
4350-4355
12
Charpentier A H, Bednarek A K, Daniel R L. et al .
Effects of estrogen on global gene expression: identification of novel targets of estrogen action.
Cancer Res.
2000;
60
5977-5983
13
Mukku V R, Stancel G M.
Regulation of epidermal growth factor receptor by estrogen.
J Biol Chem.
1985;
260
9820-9824
14
Lee A V, Jackson J G, Gooch J L. et al .
Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo.
Mol Endocrinol.
1999;
13
787-796
15
Knabbe C, Lippman M E, Wakefield L M. et al .
Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells.
Cell.
1987;
48
417-428
16
Huynh H, Yang X, Pollak M. et al .
Estradiol and antiestrogens regulate a growth inhibitory insulin-like growth factor binding protein 3 autocrine loop in human breast cancer cells.
Biol Chem.
1996;
271
1016-1021
17
Mathieu M, Vignon F, Capony F. et al .
Estradiol down-regulates the mannose-6-phosphate/insulin-like growth factor-II receptor gene and induces cathepsin-D in breast cancer cells: a receptor saturation mechanism to increase the secretion of lysosomal proenzymes.
Mol Endocrinol.
1991;
5
815-822
18
Endoh H, Sasaki H, Maruyama K. et al .
Rapid activation of MAP kinase by estrogen in the bone cell line.
Biochem Biophys Res Commun.
1997;
235
99-102
19
Migliaccio A, Di Domencio M, Nola E. et al .
Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.
EMBO J.
1996;
15
1292-1300
20
Toran-Allerand C D, Singh M, Setalo Jr G. et al .
Novel mechanisms of estrogen action in the brain: new players in an old story.
Front Neuroendocrinol.
1999;
20
97-121
21
Castoria G, Barone M V, Di-Domenico M. et al .
Non-transcriptional action of oestradiol and progestin triggers DNA synthesis.
EMBO J.
1999;
18
2500-2510
22
Singh M, Setalo Jr G, Guan X, Frail D E.
Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice.
J Neurosci.
2000;
20
1694-1700
23
Kahlert S, Nuedling S, van Eickels M. et al .
Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway.
J Biol Chem.
2000;
275
18447-18453
24
Simoncini T, Hafezi-Moghadam A, Brazil D P. et al .
Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase.
Nature.
2000;
407
538-541
25
Webb P, Lopez G N, Uht R M. et al .
Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens.
Mol Endocrinol.
1995;
9
443-456
26
Norfleet A M, Thomas M L, Gametchu B. et al .
Estrogen receptor-alpha detected on the plasma membrane of aldehyde-fixed GH3/B6/F10 rat pituitary tumor cells by enzyme-linked immunocytochemistry.
Endocrinology.
1999;
140
3805-3814
27
Monje P, Boland R.
Characterization of membrane estrogen binding proteins from rabbit uterus.
Mol Cell Endocrinol.
1999;
147
75-84
28
Razandi M, Pedram A, Greene G L. et al .
Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells.
Mol Endocrinol.
1999;
13
307-319
29
Filardo E J, Quinn J A, Bland K I. et al .
Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF.
Mol Endocrinol.
2000;
14
1649-1660
30
Filardo E J, Quinn J A, Frackelton A R, Bland K I.
Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis.
Mol Endocrinol.
2002;
16
70-84
31
Gehm B G, McAndrews J M, Jameson J L. et al .
EGF activates highly selective estrogen-responsive reporter plasmids by an ER-independent pathway.
Mol Cell Endocrinol.
2000;
159
53-62
32
Vignon F, Bouton M M, Rochefort H. et al .
Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens.
Biochem Biophys Res Commun.
1987;
146
1502-1508
33
Curtis S W, Washburn T, Sewall C. et al .
Physiological coupling of growth factor and steroid receptor signaling pathways: estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor.
PNAS USA.
1996;
39
12626-12630
34
Smith C L.
Cross-talk between peptide growth factor and estrogen receptor signaling pathways.
Biol Reprod.
1998;
58
627-632
35
El-Tanani M K, Green C D.
Two separate mechanisms for ligand-independent activation of the estrogen receptor.
Mol Endocrinology.
1997;
11
928-937
36
Tremblay A, Tremblay G B, Labrie F, Giguere V.
Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1.
Mol Cell.
1999;
3
513-519
37
Joel P B, Traish A M, Lannigan D A.
Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase.
J Biol Chem.
1998;
273
13317-13323
38
Feng W, Webb P, Nguyen P. et al .
Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway.
Mol Endocrinol.
2001;
15
32-45
39
Joel P B, Smith J, Sturgill T W. et al .
pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167.
Mol Cell Biol.
1998;
18
1978-1984
40
Lee H, Jiang F, Wang Q. et al .
MEKK1 activation of human estrogen receptor alpha and stimulation of the agonistic activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells.
Mol Endocrinol.
2000;
14
1882-1896
41
Planas Silva M, Donaher J L, Weinberg R A.
Functional activity of ectopically expressed estrogen receptor is not sufficient for estrogen-mediated cyclin D1 expression.
Cancer Res.
1999;
59
4788-4792
42
Dufourny B, Alblas J, van Teefelen H A. et al .
Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase.
J Biol Chem.
1997;
272
31163-31171
43
Zwijsen R M, Wientjens E, Klompmaker R. et al .
CDK-independent activation of estrogen receptor by cyclin D1.
Cell.
1997;
88
405-415
44
Neuman E, Ladha M H, Lin N. et al .
Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4.
Mol Cell Biol.
1997;
17
5338-5347
45
Zwijsen R M, Buckle R S, Hijmans E M. et al .
Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1.
Genes Dev.
1998;
12
3488-3498
46
Mc Mahon C, Suthphongchai T, Di Renzo J. et al .
P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor.
PNAS USA.
1999;
96
5382-5387
47
Johnston S R, Haynes B P, Smith I E. et al .
Acquired tamoxifen resistance in human breast cancer and reduced intra-tumoral drug concentration.
Lancet.
1993;
342
1521-1522
48
Scott G K, Kushner P, Vigne J L, Benz C C.
Truncated forms of DNA-binding estrogen receptors in human breast cancer.
Clin Invest.
1991;
88
700-706
49
Katzenellenbogen B S, Montano M M, Le Goff P.
Antiestrogens: mechanisms and actions in target cells.
J Steroid Biochem Molec Biol.
1995;
53
387-393
50
Revillion F, Bonneterre J, Peyrat J P. et al .
ERBB2 oncogene in human breast cancer and its clinical significance.
Eur J Cancer.
1998;
34
791-808
51
De Laurentiis M, Arpino G, Massarelli E.
Metaanalysis of the interaction between Her2 and the response to endocrine therapy (ET) in metastatic breast cancer (MBC).
Proc Am Soc Clin Oncol.
2000;
19
300
52
Adjuvant Therapy for Breast Cancer .
.
NIH Consensus Statement.
2000;
17
1-23
53
Wright C, Nicholson S, Angus B. et al .
Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer.
Br J Cancer.
1992;
65
118-121
54
Borg A, Baldetorp B, Fernö M. et al .
ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer.
Cancer Lett.
1994;
81
137-144
55
Leitzel K, Teramoto Y, Konrad K. et al .
Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer.
J Clin Oncol.
1995;
13
1129-1135
56
Carlomagno C, Perrone F, Gallo C. et al .
c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases.
J Clin Oncol.
1996;
14
2702-2708
57
Yamauchi H, O'Neill A, Gelman R. et al .
Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein.
J Clin Oncol.
1997;
15
2518-2525
58
Elledge R M, Green S, Ciocca D. et al .
HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study.
Clin Cancer Res.
1998;
4
7-12
59
Houston S J, Plunkett T A, Barnes D M. et al .
Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer.
Br J Cancer.
1999;
79
1220-1226
60
Berry D A, Muss H B, Thor A D. et al .
HER-2/neu and p53 expression versus tamoxifen resistance in estrogen receptor-positive, node-positive breast cancer.
J Clin Oncol.
2000;
18
3471-3479
61
Knoop A S, Bentzen S M, Nielsen M M. et al .
Value of epidermal growth factor receptor, HER2, p53, and steroid receptors in predicting the efficacy of tamoxifen in high-risk postmenopausal breast cancer patients.
J Clin Oncol.
2001;
19
3376-3384
62
Pietras R J, Arboleda J, Reese D M. et al .
HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells.
Oncogene.
1995;
10
2435-2446
63
Nicholson R I, Gee J M.
Oestrogen and growth factor cross-talk and endocrine insensitivity and acquired resistance in breast cancer.
Br J Cancer.
2000;
82
501-513
64
Kurokawa H, Lenferink A EG, Simpson J F. et al .
Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells.
Cancer Res.
2000;
60
5887-5894
65
Campbell R A, Bhat-Nakshatri P, Patel N M. et al .
Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance.
J Biol Chem.
2001;
276
9817-9824
66
McCLelland R, Barrow A, Madden T A. et al .
Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182, 780 (Faslodex).
Endocrinology.
2001;
142
2776-2778
67
Shim W S, Conaway M, Masamura S. et al .
Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo.
Endocrinology.
2000;
141
396-405
68
Coutts A S, Murphy L C.
Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells.
Cancer Res.
1998;
58
4071-4074
69
Larsen S S, Egeblad M, Jaattela M. et al .
Acquired antiestrogen resistance in MCF-7 human breast cancer sublines is not accomplished by altered expression of receptors in the ErbB-family.
Breast Cancer Res Treat.
1999;
58
41-56
70
Oesterreich S, Zhang P, Guler R L. et al .
Re-expression of estrogen receptor alpha in estrogen receptor alpha-negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth.
Cancer Res.
2001;
61
5771-5777
71
Treeck O, Diedrich K, Ortmann O.
Activation of extracellular signal-regulated kinase by estradiol impairs the inhibitory effect of trastuzumab on HER2 signaling in endometrial adenocarcinoma cell lines.
Eur J Cancer.
;
in press
72
Gee J M, Hutcheson I R, Knowlden J M. et al .
The EGFR-selective tyrosine kinase inhibitor ZD1839 (Iressa) is an effective inhibitor of Tamoxifen-resistant breast cancer growth.
Proc Am Soc Clin Oncol.
2001;
20
282
73
Smaill J B, Rewcastle G W, Loo J A. et al .
Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3, 2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions.
J Med Chem.
2000;
43
1380-1397
74
Sherwood V, Bridges A J, Denny W A. et al .
Specific, irreversible inactivation of the epidermal growth factor receptor and ErB2 by a new class of tyrosine kinase inhibitor.
Proc Am Assoc Cancer Res.
1999;
40
723
75
Baselga J, Averbuch S D.
ZD1839 (‘Iressa') as an anticancer agent.
Drugs.
2000;
60
33-40
76
Moulder S L, Yakes F M, Bianco R. et al .
Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo.
Cancer Res.
2001;
24
8887-8895
77
Moyer J D, Barbacci E G, Iwata K K. et al .
Induction of apoptosis and cell cycle arrest by CP-358, 774, an inhibitor of epidermal growth factor receptor tyrosine kinase.
Cancer Res.
1997;
57
4838-4848
78
Torance C J, Jackson P E, Montgomery E. et al .
Combinatorial chemoprevention of intestinal neoplasia.
Nat Med.
2000;
6
1024-1028
79
Bruns C J, Solorzano C C, Harbison M T. et al .
Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma.
Cancer Res.
2000;
60
2926-2935
80
Xia W, Mullin R, Keith B. et al .
GW2016, a dual inhibitor of erB-2 and EGFR tyrosine kinases: Effects on receptor tyrosine autophosphorylation, downstream signaling intermediaries, and in vivo anti-tumor activity.
Proc Am Assoc Cancer Res.
2001;
42
3635
81
Huober J, Wagner U, Wallwiener D.
Der Stellenwert von Aromatasehemmern in der dritten Generation in der endokrinen Therapie des Mammakarzinoms - Zeit zum Umdenken?.
Geburtsh Frauenheilk.
2002;
62
15-21
82
Wolf C. et al .
GENARI - Ein Studienkonzept zur Prüfung von Verträglichkeit, Wirksamkeit und Nutzen einer chemoendokrinen präoperativen Behandlung mit Exemestan.
Geburtsh Frauenheilk.
2002;
62
333-338
83
Ellis M J, Coop A, Singh B. et al .
Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial.
J Clin Oncol.
2001;
19
3808-3816
Dr. rer. nat. Oliver Treeck
Lehrstuhl für Geburtshilfe und Frauenheilkunde der Universität Regensburg Caritas Krankenhaus St. Josef
Landshuter Straße 65
93053 Regensburg
Email: treeck@email.com