Endoskopie heute 2003; 16(2): 75-90
DOI: 10.1055/s-2003-41945
Übersicht

© Georg Thieme Verlag Stuttgart · New York

New Dimensions in Medical Imaging: Bioendoscopy

Neue Dimensionen in der Bildgebung: BioendoskopieR. S. DaCosta1 , N. E. Marcon2
  • 1Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada, Phone: (4 16)9 46-4 51 Ext. 50 21, Fax: (4 16)9 46-65 29, E-mail: rdacosta@oci.utoronto.ca
  • 2St. Michael’s Hospital, Center for Therapeutic Endoscopy & Endoscopic Oncology, 16-062 Victoria Wing, 30 Bond Street, Toronto, Ontario, M5B 1W8, Phone: 4 16-8 64-30 92, Fax: 4 16-9 26-49 51, E-mail: norman.marcon@utoronto.ca
Nach einem Vortrag, gehalten auf dem 33. Kongress der DGE-BV, 4.4.2003 in Düsseldorf, siehe auch Endoscopy (2003) 35
Further Information

Publication History

Publication Date:
16 September 2003 (online)

Introduction

Despite the many technological advances that have occurred in the field of diagnostic endoscopy over the past few decades, remarkably the histological identification of dysplastic changes occurring within the gastrointestinal mucosa remains at present the best ”risk marker” for advancement to adenocarcinoma. On going research continues at the basic and clinical levels to evaluate putative molecular markers (i. e. fecal, serological, or urinary) which may facilitate the detection of early neoplastic disease, but unfortunately no such markers have been reported with reliable diagnostic value. Ideally, such tests would offer a means to better select asymptomatic patients for endoscopic examination, and the ability to identify subtle mucosal lesions allowing curative intervention either by ablation or minimally invasive surgery.

Conventional endoscopic screening detects lesions in patients presenting with symptoms of obstruction, pain or bleeding due to cancer caused by lesions that are usually large and obvious with endoscopy or radiology, and at such an advanced stage are generally incurable. Unfortunately, conventional white light endoscopy is suboptimal at detecting dysplasia and is associated with a disproportionate miss rate for subtle lesions, e. g. flat adenomas. A further complication is the difficulty of detecting dysplasia within fields of transformed mucosa, such as Barrett’s esophagus and long standing chronic ulcerative colitis. These limitations present a significant clinical challenge and provide the incentive for development of new endoscopy systems to complement white light endoscopy.

Novel photodiagnostic modalities are being developed and evaluated clinically for adjunctive use with standard endoscopy. These emerging technologies are based on the relative differences in the way light interacts with normal tissues and abnormal tissues which, during disease transformation, acquire altered optical properties. While conventional endoscopy is limited to detect lesions based on gross morphological changes, these new optically-based methods collectively offer a new strategy for endoscopic detection, ”bioendoscopy”, with the potential of detecting the very earliest mucosal changes at the microstructural, biochemical and molecular levels in realtime.

References

  • 1 Backman V, Wallace M B, Perelman L T. et al . Detection of preinvasive cancer cells.  Nature. 2000;  406 35-36
  • 2 Ballou B, Fisher G W, Hakala T R, Farkas D L. Tumor detection and visualization using cyanine fluorochrome-labeled antibodies.  Biotechnol Prog. 1997;  13 649-658
  • 3 Bando T, Muguruma N, Ito S. et al . Basic studies on a labeled anti-mucin antibody detectable by infrared-fluorescence endoscopy.  J Gastroenterol. 2002;  37(4) 260-269
  • 4 Battle A MC. Porphyrins, porphyrias, cancer and photodynamic therapy: a model of carcinogenesis.  J Photochem Photobiol. 1993;  B20 5-22
  • 5 Baumgartner R, Huber R M, Schulz H. et al . Inhalation of 5- aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer.  J Photochem Photobiol B. 1996;  36(2) 169-174
  • 6 Bird R P. Role of aberrant crypt foci in understanding the pathogenesis of colon cancer.  Cancer Lett. 1995;  29 55-71
  • 7 Bohorfoush A G. Tissue spectroscopy for gastrointestinal diseases.  Endoscopy. 1996;  28 372-380
  • 8 Bouma B E, Tearney G J, Compton C C, Nishioka N S. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.  Gastrointest Endosc. 2000;  51 467-474
  • 9 Bourg-Heckly G, Blais J, Padilla J J, Bourdon O, Etienne J, Guillemin F, Lafay L. Endoscopic ultraviolet-induced autofluorescence spectroscopy of the esophagus: tissue characterization and potential for early cancer diagnosis.  Endoscopy. 2000;  32(10) 756-765
  • 10 Cothren R M, Richards-Kortum R, Sivak M V. et al . Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy.  Gastrointest Endosc. 1990;  36 105-111
  • 11 Cothren R M, Sivak M V, Van Dame J. et al . Detection of dysplasia at colonoscopy using laserinduced fluorescence: A blinded study.  Gastrointest Endosc. 1996;  44 168-176
  • 12 DaCosta R. MSc Thesis. University of Toronto, University of Toronto Press 2000
  • 13 DaCosta R ., Andersson H ., Wilson B C. Autofluorescence characterization of isolated whole crypts and primary cultured human epithelial cells from normal, hyperplastic and adenomatous colonic mucosa. (In preparation, 2003)
  • 14 DaCosta R S, Lilge L, Kost J. et al . Confocal fluorescence microscopy/macroscopy and microspectrofluorimetry analysis of human colorectal tissues.  J Analytical Morphology. 1997;  4 24-29
  • 15 DaCosta R S, Tang Y, Reilly R M, Wilson B C. In vivo imaging of colonic tumours with a near-infrared fluorescent probe targeted against a tumour-associated-mucin in a human colon cancer xenograft mouse model. Annual Meeting of the American Gastroenterology Association, Digestive Diseases Week Conference, May 2002, [ Abstract # 107 466]
  • 16 DaCosta R S, Wilson B C, Marcon N E. Light-induced fluorescence endoscopy of the gastrointestinal tract.  Gastrointest Endosc Clin North Am. 2000;  10 37-69
  • 17 DaCosta R S, Andersson H, Wilson B C. Characterization of the excitation and emission matrices of possible fluorophores in human tissues and cells. J Photochem Photobiol 2003 (Submitted)
  • 18 Delaney P M, King R G, Lambert J R, Harris M R. Fibre optic confocal imaging(FOCI) for subsurface microscopy of the colon in vivo.  J Anat. 1994;  184 157-160
  • 19 Dickensheets D L, Kino G S. Micro-machined scanning confocal optical microscope.  Opt Lett. 1996;  21 764-766
  • 20 Drezek R, Sokolov K, Utzinger U, Boiko I, Malpica A, Follen M, Richards-Kortum R. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.  J Biomed Opt. 2001;  6(4) 385-396
  • 21 Egger K, Werner M, Meining A, Ott R, Allescher H D, Hofler H, Classen M, Rosch T. Biopsy surveillance is still necessary in patients with Barrett’s oesophagus despite new endoscopic imaging techniques.  Gut. 2003;  52(1) 18-23
  • 22 Endo M, Sakakibara N, Suzuki H. et al . Observation of esophageal lesions with the use of endoscopic dyes.  Progress of Digestive Endoscopy. 1972;  1 34
  • 23 Fijan S, Honigsmann H, Ortel B. Photodynamic therapy of epithelial skin tumors using delta aminolevulinic acid and desferrioxamine. Br J.  Dermatol. 1995;  133 282-288
  • 24 Folli S, Wagnieres G, Pelegrin A. et al . Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimerical antibodies against carcinoembrionic antigen.  Proc Natl Acad Sci. 1992;  89 7973-7977
  • 25 Folli S, Westermann P, Braichotte D. et al . Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice.  Cancer Res. 1994;  54 2643-2649
  • 26 Georgakoudi I, Jacobson B C, Van Dam J. et al . Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus.  Gastroenterology. 2001;  120 1620-1629
  • 27 Gutowski M, Carcenac M, Pourquier D. et al . Intraoperative immunophotodetection for radical resection of cancers: evaluation in an experimental model.  Clin Cancer Res. 2001;  7(5) 1142-1148
  • 28 Hanlon E B, Manoharan R, Koo T W. et al . Prospects for in vivo Raman spectroscopy.  Phys Med Biol. 2000;  45 1-59
  • 29 Haringsma J, Tytgat G N, Yano H. et al . Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology.  Gastrointest Endosc. 2001;  53 642-650
  • 30 Haringsma J, Tytgat G NJ. Fluorescence and autofluorescence.  Baillier’s Clinical Gastroenterology. 1999;  13 1-10
  • 31 Harries M L, Lam S, MacAulay C, Qu J, Palcic B. Diagnostic imaging of the larynx: autofluorescence of laryngeal tumours using the helium-cadmium laser.  J Laryngol Otol. 1995;  109(2) 108-110
  • 32 Hayashi S, Muguruma N, Bando T, Taoka S, Ito S, Ii K. Vital immunohistochemical staining for a novel method of diagnosing micro-cancer. Examination of immunohistochemical staining of non-fixed fresh tissue.  J Med Invest. 1999;  46(3 - 4) 178-185
  • 33 Horisberger M. Colloidal gold: a cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy.  Scan Electron Microsc. 1981;  (Pt 2) 9-31
  • 34 Ina H, Shibuya H, Ohashi I. et al . The frequency of a concomitant early esophageal cancer in male patients with oral and oropharyngeal cancer: Screening results using Lugol dye endoscopy.  Cancer. 1994;  73 2038-2041
  • 35 Inoue H, Igari T, Nishikage T, Ami K, Yoshida T, Iwai T. A novel method of virtual histopathology using laser-scanning confocal microscopy in-vitro with untreated fresh specimens from the gastrointestinal mucosa.  Endoscopy. 2000;  32 439-443
  • 36 Ito S, Muguruma N, Kusaka Y. et al . Detection of human gastric cancer in resected specimens using a novel infrared fluorescent anti-human carcinoembryonic antigen(CEA) antibody with an infrared fluorescence endoscope in vitro.  Endoscopy. 2001;  33(10) 849-853
  • 37 Josephson L, Kircher M F, Mahmood U, Tang Y, Weissleder R. Near-Infrared Fluorescent Nanoparticles as Combined MR/Optical Imaging Probes.  Bioconjug Chem. 2002;  13(3) 554-560
  • 38 Kapadia C R, Cutruzzola F W, O’Brien K M. et al . Laser-induced fluorescence spectroscopy of human colonic mucosa: detection of adenomatous transformation.  Gastroenterology. 1990;  99(1) 150-157
  • 39 Keller R, Winde G, Eisenhawer C. et al . Immunoscopy - a technique combining endoscopy and immunofluorescence for diagnosis of colorectal cancer.  Gastrointest Endosc. 1998;  47 154-161
  • 40 Keller R, Winde G, Terpe H J, Foerster E C, Domschke W. Fluorescence endoscopy using a fluorescein-labeled monoclonal antibody against carcinoembryonic antigen in patients with colorectal carcinoma and adenoma.  Endoscopy. 2002;  34(10) 801-807
  • 41 Kennedy J C, Marcus S L, Pottier R H. Photodynamic therapy(PDT) and photodiagnosis(PD) using endogenous photosensitization induced by 5-aminolevulinic acid(ALA): mechanisms and clinical results.  J Clin Laser Med Surg. 1996;  14(5) 289-304
  • 42 Krammer B, Uberriegler K. In-vitro investigation of ALA- induced protoporphyrin IX.  J Photochem Photobiol B. 1996;  36(2) 121-126
  • 43 Kriegmair M, Baumgartner R, Knuechel P. et al . Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid.  Urology. 1994;  44 836-841
  • 44 Krishnadath K K, Reid B J, Wang K K. Biomarkers in Barrett esophagus.  Mayo Clin Proc. 2001;  76 438-446
  • 45 Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H. Diagnosis of colorectal tumorous lesions by magnifying endoscopy.  Gastrointest Endosc. 1996;  44 8-14
  • 46 Kudo S, Tamure S, Nakajima T. et al . Depressed type of colorectal cancer.  Endoscopy. 1995;  27 54-57
  • 47 Kusaka Y, Ito S, Muguruma N. et al . Vital immunostaining of human gastric and colorectal cancers grafted into nude mice: a preclinical assessment of a potential adjunct to videoendoscopy.  J Gastroenterol. 2000;  35(10) 748-752
  • 48 Lam S, MacAulay C, leRiche J C, Palcic B. Detection and localization of early lung cancer by fluorescence bronchoscopy.  Cancer. 2000;  89 2468-2473
  • 49 Lane P, Dlugan A LP, MacAuley C. DMD-enabled conofcal microscopy. Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V. Tuchin VV, Izatt JA, Fujimotto JG (Eds). Proceedings SPIE Vol 4251, 2001
  • 50 Lane P, Dlugan A LP, Richards- Kortum R, MacAuley C. Fiber-optic confocal microscopy using a spatial light modulator.  Opt Lett. 2000;  25(24) 1780-1782
  • 51 Lange N, Jichlinski P, Zellweger M. et al . Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study. Br.  J Cancer. 1999;  80 185-193
  • 52 Leunig A, Rick K, Stepp H. et al . Fluorescence imaging and spectroscopy of 5-aminolevulinic acid-induced protoporphyrin IX for the detection of neoplastic lesions of the oral cavity.  Am J Surg. 1996;  172 674-677
  • 53 Leveckis J, Burn J L, Brown N J, Reed M W. Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder.  J Urol. 1994;  152(2 Pt 1) 550-553
  • 54 Liang C, Sung K B, Richards-Kortum R R, Descour M R. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope.  Appl Opt. 2002;  41(22) 4603-4610
  • 55 Loh C S, MacRobert A J, Bedwell J, Regula J, Krasner N, Bown S G. Oral versus intravenous administration of 5’-aminolaevulinic acid for photodynamic therapy.  Br J Cancer. 1993;  68 41-51
  • 56 Loh C S, Vernon D, MacRobert A J, Bedwell J, Bown S G, Brown S B. Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract.  J Photochem Photobiol B. 1993;  20(1) 47-54
  • 57 Marchesini R, Pignoli E, Tomatis S. et al . Ex vivo optical properties of human colon tissue.  Lasers in Surgery and Medicine. 1994;  15 351-357
  • 58 Marcus S L, Sobel R S, Golub A L. et al . Photodynamic therapy(PDT) and photodiagnosis(PD) using endogenous photosensitization induced by 5-aminolevulinic acid(ALA): current clinical and developmental status.  J Clin Laser Med Surg. 1996;  14 59-66
  • 59 Marten K, Bremer C, Khazaie K, Sameni M, Sloane B, Tung C H, Weissleder R. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice.  Gastroenterology. 2002;  122(2) 406-414
  • 60 Martin A, Tope W T, Grevelink J C. et al . Lack of selectivity of protoporphyrin-IX fluorescence for basal-cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic treatment.  Arch Dermat Res. 1995;  287 665-674
  • 61 Maunoury V, Mordon S, Geboes K. et al . Early vascular changes in Crohn’s disease: an endoscopic fluorescence study.  Endoscopy. 2000;  32 700-705
  • 62 McLaren W J, Anikijenko P, Thomas S G, Delaney P M, King R G. In vivo detection of morphological and microvascular changes of the colon in association with colitis using fiberoptic confocal imaging (foci).  Dig Dis Sci. 2002;  4(11) 2424-2433
  • 63 Messman H, Knuchel R, Baumer W. et al . Endoscopic fluorescence detection of dysplasia in patients with Barrett’s esophagus, ulcerative colitis, or adenomatous polyps after 5- aminolevulinic acid-induced protoporphyrin IX sensitization.  Gastrointestinal Endoscopy. 1999;  49 97-100
  • 64 Messman H, Mikvy P, Montan S. et al . Endoscopic and microscopic fluorescence studies in patients with ulcerative colitis after 5-aminolevulinic acid sensitization [abstract].  In Gastroenterology. 1997;  108 A506
  • 65 Messmann H, Kullmann F, Wild T. et al . Detection of dysplastic lesions by fluorescence in a model of colitis in rats after previous photosensitization with 5-aminolaevulinic acid.  Endoscopy. 1998;  30 333-338
  • 66 Molckovsky A, Wong Kee Song L M, Shim M G, Marcon N E, Wilson B C. Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps.  Gastrointest Endosc. 2003;  57(3) 396-402
  • 67 Muguruma N, Ito S, Hayashi S. et al . Antibodies labeled with fluorescence-agent excitable by infrared rays.  J Gastroenterol. 1998;  33(4) 467-471
  • 68 Mycek M A, Schomacker K T, Nishioka N S. Colonic polyp differentiation using time-resolved autofluorescence spectroscopy.  Gastrointest Endosc. 1998;  48 390-394
  • 69 Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by’Surface-Enhanced Raman Scattering.  Science. 1997;  275(5303) 1102-1106
  • 70 Nussbaum S, Roth H J. Human anti-mouse antibodies: pitfalls in tumor marker measurement and strategies for enhanced assay robustness; including results with Elecsys CEA.  Anticancer Res. 2000;  20 5249-5252
  • 71 Ortner M A, Ebert B, Hein E, Zumbusch K, Nolte D, Sukowski U, Weber-Eibel J, Fleige B, Dietel M, Stolte M, Oberhuber G, Porschen R, Klump B, Hortnagl H, Lochs H, Rinneberg H. Time-gated fluorescence spectroscopy in Barrett’s oesophagus.  Gut. 2003;  52(1) 28-33
  • 72 Brand S, Wang T D, Schomacker K T, Poneros J M, Lauwers G Y, Compton C C, Pedrosa M C, Nishioka N S. Detection of high-grade dysplasia in Barrett ’s esophagus by spectroscopy measurement of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence.  Gastrointest Endosc. 2002;  56(4) 479-487
  • 73 Panjehpour M, Overholt B F, Schmidhammer J L. et al . Spectroscopic diagnosis of esophageal cancer: new classification model, improved measurement system.  Gastrointest Endosc. 1995;  41 577-581
  • 74 Panjepour M, Overholt B F, VO-Dinh T, Haggitt R C, Edwards D A, BuckleyIII F R. Endoscopic fluorescence detection of high- grade dysplasia in Barrett’s esophagus.  Gastroenterology. 1996;  111 93-101
  • 75 Panjepour M, Overholt B F, VO-Dinh T, Haggitt R C, Edwards D A, Buckley III F R. Endoscopic fluorescence detection of high-grade dysplasia in Barrett’s esophagus.  Gastroenterology. 1996;  111 93-101
  • 76 Pelegrin A, Folli S, Buchegger F, Mach J P, Wagnieres G, van den Bergh H. Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice.  Cancer. 1991;  67 2529-2537
  • 77 Peng Q, Berg K, Moan J, Kongshaug M, Nesland J M. 5-Aminolevulinic acid- based photodynamic therapy-principles and experimental research.  Photochem Photobiol. 1997;  65 235-251
  • 78 Pfefer T J, Paithankar D Y, Poneros J M, Schomacker K T, Nishioka N S. Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus.  Lasers Surg Med. 2003;  32(1) 10-16
  • 79 Pitris C, Jesser C, Boppart S A, Stamper D, Brezinski M E, Fujimoto J G. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. J.  Gastroenterol.. 2000;  35 87-92
  • 80 Ramjiawan B, Maiti P, Aftanas A. et al . Noninvasive localization of tumors by immunofluorescence imaging using a single chain Fv fragment of a human monoclonal antibody with broad cancer specificity.  Cancer. 2000;  89 1134-1144.
  • 81 Reilly R M. Radioimmunotherapy of malignancies.  Clin Pharm. 1991;  10 359-375
  • 82 Richards-Kortum R, Rava R P, Fitzmaurice M. et al . Spectroscopic diagnosis of colonic dysplasia.  Photochem Photobiol. 1991;  53 777-786
  • 83 Rick K, Sroka R, Stepp H. et al . Pharmacokinetics of 5’-Aminolevulinic acid-induced protoporphyrin IX in skin and blood.  J Photochem Photobiol B. 1997;  40 313-319
  • 84 Riddell R H, Goldman H, Ransohoff D F. et al . Dysplasia in inflammatory bowel disease: standardization classification with provisional clinical applications.  Hum Pathol. 1983;  14 931-968
  • 85 Rollins A M, Yazdanfar S, Barton J K, Izatt J A. Real-time in vivo color Doppler optical coherence tomography.  J Biomed Opt. 2002;  7(1) 123-129
  • 86 Saitoh Y, Waxman I, West A B. et al . Prevalence and distinctive biologic features of flat colorectal adenomas in a North American population.  Gastroenterol. 2001;  120 1657-1665
  • 87 Schomacker K T, Frisoli J K. Compton CC et al. Ultraviolet laser-induced fluorescence of colonic polyps.  Gastroenterology. 1992;  102 1155-1160
  • 88 Sharma P ., Weston A P, Sampliner R E. Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett’s esophagus.  Gastrointestinal Endoscopy. 2001;  53 AB62
  • 89 Shim M G, Wilson B C, Marple E, Wach M. A study of fiber-optic probes for in vivo medical Raman spectroscopy.  Appl Spectrosc. 1999;  53 619-627
  • 90 Shim M G, Wilson B C. Development of an in vivo Raman spectroscopic system for diagnostic applications.  J Raman Spectrosc. 1997;  28 131-142
  • 91 Shim M G, Wilson B C. The effects of ex vivo handling procedures on the near-infrared Raman spectra of normal mammalian tissues.  Photochem Photobiol. 1996;  63 662-671
  • 92 Sivak M V, Kobayashi Y, Izatt J A. et al . High-resolution endoscopic imaging of the GI tract using optical coherence tomography.  Gastrointest Endosc. 2000;  51 474-479
  • 93 Srivastava S, Verma M, Henson D E. Biomarkers for early detection of colon cancer.  Clin Cancer Res. 2001;  7 1118-1126
  • 94 Stummer W S, Stocker S, Wagner S. et al . Intraoperative detection of malignant glioma by 5-ALA induced porphyrin fluorescence.  Neurosurgery. 1998;  42 518-526 Surg Med. 1995;  16(1) 41-47
  • 95 Takayama T, Katsuki S, Takahashi Y. et al . Aberrant crypt foci of the colon as precursors of adenoma and cancer.  N Engl J Med. 1998;  339 1277-1284
  • 96 Tatsuta M, Iishi H, Ichii M. et al . Diagnosis of gastric cancers with fluorescein-labeled monoclonal antibodies to carcinoembryonic antigen.  Lasers Surg Med. 1989;  9 422-426
  • 97 van den Boogert J, Houtsmuller A B, de Rooij F WM. et al . Kinetics, localization, and mechanism of 5-aminolevbulinic acid-induced porphyrin accumulation in normal and Barrett’s like rat esophagus.  Las Surg Med. 1999;  24 3-13
  • 98 Vo-Dinh T, Panjehpour M, Overholt B F, Farris C, Buckley 3rd  F P, Sneed R. In vivo cancer diagnosis of the esophagus using differential normalized fluorescence(DNF) indices. Lasers
  • 99 Wagnieres G A, Star W M, Wilson B C. In vivo fluorescence spectroscopy and imaging for oncological applications.  Photochem Photobiol. 1998;  68 603-632
  • 100 Wallace M B, Perelman L T, Backman V. et al . Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy.  Gastroenterology. 2000;  119 677-682
  • 101 Webber J, Kessel D, Fromm D. Side effects and photosensitization of human tissue after aminolevulinic acid.  J Surg Res. 1997;  68 31-37
  • 102 Weissleder R, Tung C H, Mahmood U, Bogdanov Jr A. In vivo imaging of tumours with protease activated near-infrared fluorescent probes.  Nat Biotechnol. 1999;  17 375-378
  • 103 Wong Kee Song L M, Shim M G, Wilson B C, Hassaram S, Basset N, Cirocco M, Wang K K, Kandel G, Kortan P, Haber G B, Marcon N E. In vivo endoscopic Raman spectroscopy for the differentiation of dysplasia(low-grade versus high-grade) within Barrett’s esophagus.  Gastrointest Endosc. 2001;  53(5) AB109
  • 104 Wong Kee Song L M, Molckovsky A, Wang K, Gao T, Basset N, Cirocco M, Marcon N, Hsieh E, Riddell R, Shim M G, Wilson B C. Raman spectroscopy for in vivo classification of Barrett’s tissue.  Gastroenterology. 2002;  122(4 Suppl) A288
  • 105 Yang V XD, Gordon M L, Mok A, Zhao Y, Chen Z, Cobbold R SC., Wilson B C, Vitkin I A. Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation.  Optics Communications. 2002;  208 209-214
  • 106 Yano H, Iishi H, Tatsuta M. Diagnosis of early gastric cancers by endoscopic autofluorescence imaging system [abstract].  Endoscopy. 1996;  28 S29
  • 107 Yokota T, Milenic D E, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms.  Cancer Res. 1992;  52 3402-3408
  • 108 Zonios G I, Cothren R M, Arendt J T. et al . Morphological model of human colon tissue fluorescence.  IEEE Transactions on Biomedical Engineering. 1996;  43 113-122

Dr. Noman E. Marcon

St. Michael’s Hospital · Center for Therapeutic Endoscopy & Endoscopic Oncology

16-062 Victoria Wing

30 Bond Street

Toronto, Ontario, M5B 1W8

Phone: 4 16/8 64/30 92

Fax: 4 16/9 26/49 51

Email: norman.macron@utoronto.ca

    >