Semin Hear 2003; 24(3): 223-234
DOI: 10.1055/s-2003-41220
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Effects of Medications on Physiological Measures of Auditory Function

Michael J. Cevette1 , Theodore J. Glattke2
  • 1Mayo Clinic, Scottsdale, Arizona
  • 2University of Arizona, Tucson, Arizona
Further Information

Publication History

Publication Date:
14 August 2003 (online)

ABSTRACT

Physiologic measures that range from evaluation of the status of the middle ear to myogenic potentials linked to vestibular stimulation are important supplements to behavioral measures of hearing. All of these measures are influenced by medications that may be used to treat symptoms or otherwise help to manage patients who present with multiple handicaps. Some of the interactions occur because of the medication's direct influence on the auditory system, whereas others stem from general depressant effects on the central nervous system. In general, responses obtained from the periphery tend to be vulnerable to cochleotoxic or vestibulotoxic agents that may influence the response before they produce a measurable hearing loss. In contrast, endogenous responses are influenced markedly by level of sedation or sleep state. The clinician employing physiologic measures must be aware of the patient's medication history to interpret properly the outcomes of physiological tests.

REFERENCES

  • 1 Magnuson, B. Physiology of the Eustachian tube and middle ear pressure regulation. In: Jahn A, Santos-Sacchi J, eds. Physiology of the Ear, 2nd ed San Diego, CA: Singular 2001 : 75-99
  • 2 Buckingham R, Ferrer J. Observations of middle ear pressures.  Ann Otol Rhin Laryngol . 1980;  89(Suppl 68) 56-61
  • 3 Buckingham R, Stuart D, Gieck H, Girgis S, McGee T. Experimental evidence against middle ear oxygen absorption.  Laryngoscope . 1984;  95 437-442
  • 4 Kuschnir H, Rust M, Eisler, K. Changes of pressure within the middle ear during various kinds of anaesthesia.  Laryngorhinoologie . 1981;  60 418-420
  • 5 Rees G, Freeland, A. The effect of anaesthesia on tympanograms of children undergoing grommet insertion.  Clin Otolarygol & Allied Sciences . 1992;  17 200-202
  • 6 Nagai T, Nagai M, Nagata Y, Morimitsu T. The effects of anesthesia of the tympanic membrane on Eustachian tube function.  Arch Oto-Rhino-Laryngol . 1989;  246 210-212
  • 7 Toth L, Lampe I, Dioszeghy P, Repassy G. The diagnostic value of stapedius reflex and stapedius reflex exhaustion in myasthenia gravis.  Electromyogr Clin Neurophysiol . 2000;  40 17-20
  • 8 Morioka W, Neff P, Boisseranc T, Hartman P, Cantrell R. Audiotympanometric findings in mysasthenia gravis.  Arch Otolaryngol . 1976;  102 211-213
  • 9 Neff P, Morioka W, Sample P, Cantrell R. Audiometric and tympanometric monitoring of a disease affecting nerve-muscle transmission.  Audiology . 1980;  19 293-309
  • 10 Ruth R, Johns M, Gal T. Acoustic reflex response during curare-induced weakness.  Ann Otol Rhinol Laryngol . 1980;  89 188-193
  • 11 Ruth R, Arora N, Gal T. Stapedius reflex in curarized subjects: an index of neuromuscular weakness.  J Appl Physiol . 1982;  52 416-420
  • 12 Bauch C, Robinette M. Alcohol and the acoustic reflex: effects of stimulus spectrum, subject variability and sex.  J Am Audiol Soc . 1978;  4 104-112
  • 13 Robinette M, Alper R, Brey R. The effects of alcohol on the acoustic reflex relaxation index.  J Audiol Res . 1981;  21 159-165
  • 14 Cohill E, Greenberg H. Effects of ethyl alcohol on the contralateral and ipsilateral acoustic reflex threshold.  J Speech Hear Res . 1979;  22 289-294
  • 15 Uhles M, Clark W, Anch M. Effects of alcohol on the acoustic reflex threshold in the chinchilla.  Acta Otolaryngol (Stockh) . 2000;  120 523-528
  • 16 Salonen M, Laurikainen E, Sipila J, Johansson R, Kanto J. The effect of flunitrazepam on acoustic reflex-a methodological pilot study.  Methods Find Exp Clin Pharmacol . 1988;  10 213-217
  • 17 Niswander P, Helfner-Mitchell F. Observations on the acoustic reflex threshold in institutionalized retarded adults taking mellaril and/or thorazine.  Ear Hear . 1988;  9 9-14
  • 18 Hall III J. The effects of high-dose barbiturates on the acoustic reflex and auditory evoked responses. Two case reports.  Acta Otolaryngol (Stockh) . 1985;  100 387-398
  • 19 Farkas Z. Acoustic reflex and general anesthesia.  Scand Audiol . 1983;  (Suppl 17) 43-46
  • 20 Dinc O, Nagel D. Measurement of the acoustically evoked stapedius reflex in intubation anesthesia.  HNO . 1986;  34 75-77
  • 21 Katbamma B. Homnick D, Marks J.  Effects of chronic tobramycin treatment on distortion product otoacoustic emissions. Ear Hear . 1999;  20 393-402
  • 22 Qiu C, Salvi R, Ding D, Burkard R. Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain.  Hear Res . 2000;  139 153-171
  • 23 Stavroulaki P, Vossinakis I, Dinopoulou D. et al . Otoacoustic emissions for monitoring aminoglycoside-induced ototoxicity in children with cystic fibrosis.  Arch Otolaryngol Head Neck Surg . 2002;  128 150-155
  • 24 Steward C, Hudspeth A. Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko.  Proc Nat Acad Sci U S A . 2000;  97 454-459
  • 25 Wier C, Pasanen E, McFadden D. Partial dissociation of spontaneous otoacoustic emissions and distortion products during aspirin use in humans.  J Acoust Soc Am . 1988;  84 230-237
  • 26 Lue A, Zhao H, Brownell W. Chlorpromazine alters outer hair cell electromotility.  Otolaryngol Head Neck Surg . 2001;  125 71-76
  • 27 Hess M, Lamprechet A, Kirkopoulos S, Fournell A. Measuring evoked otoacoustic emissions at various times during intubation anesthesia.  Folia Phoniatrica . 1991;  43 68-73
  • 28 Manley G, Schulze M, Oeckinghaus H. Otoacoustic emissions in a songbird.  Hear Res . 1987;  26 256-266
  • 29 Dallos P, Cheatham M A. Production of cochlear potentials by inner and outer hair cells.  J Acoust Soc Am . 1976;  60 510-512
  • 30 Neely S T, Kim D O. A model for active elements in cochlear biomechanics.  J Acoust Soc Am . 1986;  79 1472-1480
  • 31 Puel J L. Chemical synaptic transmission in the cochlea.  Prog Neurobiol . 1995;  47 449-476
  • 32 Cheung N Y, Bonventre J V, Malis C D, Leaf A. Calcium and ischemic injury.  N Engl J Med . 1986;  314 1670-1676
  • 33 Peul J, Ruel J, Guitton M, Wang J, Pujol R. The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies.  Audiol Neuroototol . 2002;  7 49-54
  • 34 Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea.  Physiol Rev . 1993;  73 309-373
  • 35 Ferraro J A, Durrant J D. Electrocochleography. In: Katz J ed. Handbook of Audiology Baltimore, MD: Lippincott Williams & Wilkins; 2002
  • 36 Moore R D, Smith C R, Lietman P S. Risk factors for the development of auditory toxicity in patients receiving aminoglycosides.  J Infect Dis . 1984;  149 23-30
  • 37 Brouet G, Marche J, Chevallier J. et al . Etude experimentale et clinique de la kanamycine dans l'infection tuberculeuse.  Rev Tuberc Pneumol . 1959;  23 949-988
  • 38 Wu W, Sha S, Schacht J. Recent advances in understanding aminoglycoside ototoxicity and its prevention.  Audiol Neurootol . 2002;  7 171-174
  • 39 Conlon B J, Aran J M, Erre J P, Smith D W. Attention of aminoglycoside-induced cochlear damage with the metabolic antioxidant alpha-lipoic acid.  Hear Res . 1999;  128 40-44
  • 40 Lim D J. Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review.  Am J Otolaryngol . 1986;  7 73-99
  • 41 Keene M, Graham J M. Clinical monitoring of the effects of gentamicin by electrocochleography.  J Laryngol Otol . 1984;  98 11-21
  • 42 Collins P W, Twine J M. The ototoxic effects of different doses of gentamicin on the cochlea of pigmented guinea pigs.  Br J Audiol . 1985;  19 257-264
  • 43 Ramsden R T, Latif A, O'Malley S. Electrocochleographic changes in acute salicylate overdosage.  J Laryngol Otol . 1985;  99 1269-1273
  • 44 Puel J L, Bobbin R P, Fallon M. Salicylate, meclofenamate, meclofenamate, and quinine on cochlear potentials.  Otolaryngol Head Neck Surg . 1990;  102 66-73
  • 45 Kumagai M. Effect of intravenous injection of aspirin on the cochlea [In Japanese].  Hokkaido Igaku Zasshi . 1992;  67 216-233
  • 46 Didier A, Miller J M, Nuttall A L. The vascular component of sodium salicylate ototoxicity in the guinea pig.  Hear Res . 1993;  69 199-206
  • 47 Rybak L P. Furosemide ototoxicity: clinical and experimental aspects.  Laryngoscope . 1985;  95(Suppl 38) 1-14
  • 48 Wang L. Effects of furosemide on endocochlear potentials, auditory action potentials and summating potentials and the changes of inner ear pathology [In Chinese].  Chinese J Otorhinolaryngol . 1992;  27 70-124
  • 49 Rybak L P, Whitworth C, Weberg A, Scott V. Effects of organic acids on the edema of the stria vascularis induced by furosemide.  Hear Res . 1992;  59 75-84
  • 50 Ikeda K, Kusakarei J, Takassaka T, Saito Y. The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors.  Hear Res . 1987;  26 117-125
  • 51 Waters G S, Ahmad M, Katsarkas A, Stainimir G, McKay J. Ototoxicity due to cis-diamminedichloroplatinum in the treatment of ovarian cancer: influence of dosage and schedule of administraiton.  Ear Hear . 1991;  12 91-102
  • 52 Dickerson R N, Brown R O. Hypomagnesemia in hospitalized patients receiving nutritional support.  Heart Lung . 1985;  14 561-567
  • 53 Lam M, Adelstein D J. Hypomagnesemia and renal magnesium wasting in patients treated with cisplatin.  Am J Kidney . 1986;  8 164-203
  • 54 Kohn S, Fradis M, Pratt H. et al . Cisplatin ototoxicity in guinea pigs with special reference to toxic effects in the stria vascularis.  Laryngoscope . 1988;  9 865-871
  • 55 Nakai Y, Konish K, Chang K C. et al . Ototoxicity of the anticancer drug cisplatin. An experimental study.  Acta Otolaryngol . 1982;  93 227-232
  • 56 Saito T, Aran J M. Comparative ototoxicity of cisplatin during acute and chronic treatment.  J Otorhinolaryngol Relat Spec . 1994;  56 315-320
  • 57 Nakagawa T, Kakehata S, Akaike N. et al . Effect of Ca2+ antagonist and aminoglycoside antibiotics on Ca2+ current in isolated outer hair cells of guinea pig cochlea.  Brain Res . 1992;  580 345-347
  • 58 Bobbin R P, Jastreboff P J, Fallon M, Littman T. Nimodipine, an L-channel Ca2+ antagonist, reverses the negative summating potential recorded from the guinea pig cochlea.  Hear Res . 1990;  46 277-288
  • 59 Yamamoto T, Kakehata S, Saito T, Saito H, Akaike N. Cisplatin blocks voltage-dependent calcium current in dissociated outer hair cells of guinea-pig cochlea.  Brain Res . 1994;  648 296-298
  • 60 Hamers F P, Klis S FL, Gispen W H, Smoorenburg G F. Application of a neuroprotective ACTH(4-9) analog to affect cisplatin ototoxicity: an electrocochleographic study in guinea pigs.  Eur Arch Otorhinolaryngol . 1994;  251 23-29
  • 61 Moller A R, Jannetta P J, Sekhar L N. Contributions from the auditory nerve to the brain-stem auditory evoked potentials (BAEPs): results of intracranial recording in man.  Electroencephalogr Clin Neurophysiol . 1988;  71 198-211
  • 62 Hotz M A, Allum J H, Kaufmann G. et al . Shifts in auditory brainstem response latencies following plasma-level-controlled aminoglycoside therapy.  Eur Arch Oto-Rhino-Laryngol . 1990;  147 202-205
  • 63 Sweetow R W, Will T I. Progression of hearing loss following completion of chemotherapy and radiation therapy: case report.  J Am Acad Audiol . 1993;  4 360-363
  • 64 Mokotoff B, Schulmann-Galambos C, Galambos R. Brain stem auditory evoked responses in children.  Arch Otolaryngol . 1977;  103 38-43
  • 65 Palaskas C W, Wilson M J, Dobie R A. , Electrophysiologic assessment of low-frequency hearing: sedation effects.  Otolaryngol Head Neck Surg . 1989;  101 434-441
  • 66 Martin H, Mishler E. Intraoperative monitoring of auditory evoked potentials and facial nerve electromyography. In: Katz J, ed. Handbook of Clinical Audiology Baltimore, MD: Lippincott Williams & Wilkins; 2002: 323-348
  • 67 Purdie J A, Cullen P M. Brainstem auditory evoked response during propofol anesthesia in children.  Anesthesia . 1993;  48 192-195
  • 68 Nuwer M R. Brainstem auditory monitoring and related techniques. In: Nuwer MR, ed. Evoked Potential Monitoring in the Operating Room New York: Raven Press 2002 : 158-161
  • 69 Japaridze G, Kvernadze D, Geladze T, Kevanishvili Z. Effects of carbamazepine on auditory brainstem response, middle-latency response, and slow cortical potential in epileptic patients.  Epilepsia . 1993;  34 1105-1109
  • 70 Green J B, Walcoff M R, Lucke J F. Phenytoin prolongs far-field somatosensory and auditory evoked potential interpeak laterencies.  Neurology . 1982;  32 85-88
  • 71 Verotti A, Trotta D, Cutarella R. et al . Effects of antiepileptic drugs on evoked potentials in epileptic children.  Pediatr Neurol . 2000;  23 397-402
  • 72 Picton T W, Hillyard S A, Drausz H I, Galambos R. Human auditory evoked potentials. I. Evaluation of components.  Electroencephalogr Clin Neurophysiol . 174;  36 179-190
  • 73 Deiber M P, Ibanez V, Fischer C. et al . Sequential mapping favours the hypothesis of distinct generators for Na and Pa middle latency auditory evoked potentials.  Electroencephalogr Clin Neurophysiol . 1988;  71 187-197
  • 74 Kaga K, Hink R F, Shinoda Y, Suzuki J. Evidence for a primary cortical origin of a middle latency auditory evoked potential in cats.  Electroencephalogr Clin Neurophysiol . 1980;  50 254-266
  • 75 Buchwald J S, Rubinstein E H, Schwafel J, Strandburg R J. Midlatency auditory evoked responses: differential effects of a cholinergic agonist and antagonist.  Electroencephalogr Clin Neurophysiol . 1991;  80 303-309
  • 76 Boutros N N, Reid M C, Petrakis I. et al . Similarities in the disturbances in cortical information processing in alcoholism and aging: a pilot evoked potential study.  Int Psychogeriatr . 2000;  12 513-525
  • 77 Kochs E, Stockmanns G, Thornton C, Nahm W, Kalkman C J. Wavelet analysis of middle latency auditory evoked responses: calculation of an index for detection of awareness during propofol administration.  Anesthesiology . 2001;  95 1141-1150
  • 78 Hotz M A, Ritz R, Linder L. et al . Auditory and electroencephalographic effects of midazolam and alpha-hydroxy-midazolam in healthy subjects.  Br J Clin Pharmacol . 2000;  49 72-79
  • 79 Schwender D, Klasing S, Madler C, Poppel E, Peter K. Mid-latency auditory evoked potentials during ketamine anaethesia in humans.  Br J Anaesth . 1993;  71 629-632
  • 80 Aoyagi M, Kiren T, Furuse H. et al . Effects of aging on amplitude modulation following response.  Acta Otolaryngol Suppl . 1994;  522 15-22
  • 81 Lins O G, Picton T W, Boucher B L. et al . Frequency-specific audiometry using steady-state responses.  Ear Hear . 1996;  17 81-96
  • 82 Galambos R, Makeig S, Talmachoff P J. A 40-Hz auditory potential recorded from the human scalp.  Proc Natl Acad Sci U S A . 1981;  78 2643-2647
  • 83 Stapells D R, Linden D, Suffield J B. et al . Human auditory steady state potentials.  Ear Hear . 1984;  5 105-113
  • 84 Rickards F W, Tan L E, Cohen L T. et al . Auditory steady-state evoked potential in newborns.  Br J Audiol . 1994;  28 327-37
  • 85 Rance G, Richards F W, Cohen L T. et al . The automated prediction of hearing thresholds in sleeping subjects using auditory steady-state evoked potentials.  Ear Hear . 1995;  16 499-507
  • 86 Lins O G, Pictorn T W. Auditory steady-state response to multiple simultaneous stimuli.  Electroencephalogr Clin Neurophysiol . 1995;  96 420-432
  • 87 Goto T, Nakata Y, Saito H. et al . The midlatency auditory evoked potentials predict responsiveness to verbal commands in patients emerging from anesthesia with xenon, isoflurane, and sevoflurane but not with nitrous oxide.  Anesthesiology . 2001;  94 782-789
  • 88 Ahveninen J, Tiitinen H, Hirvonen J. et al . Scopolamine augments transient auditory 40-hz magnetic response in humans.  Neurosci Lett . 1999;  277 115-118
  • 89 Jaaskelainen I P, Hirovene J, Saher M. et al . Dose-dependent suppression by ethanol of transient auditory 40-Hz response.  Psychopharmacology (Berl) . 2000;  148 132-135
  • 90 Jaaskelainen I P, Hirvonen J, Saher M. et al . Benzodiazepine temazepam suppresses the auditory 40-Hz response amplitude in humans.  Neurosci Lett . 1999;  268 105-107
  • 91 Plourde G, Villemure C, Fiest P. et al . Effect of isoflurane on the auditory steady-state response and on consciousness in human volunteers.  Anesthesiology . 1998;  89 844-851
  • 92 Winkler I, Tervaniemi M, Naatanen R. Two separate codes for missing-fundamental pitch in the human auditory cortex.  J Acoust Soc Am . 1997;  102 1072-1082
  • 93 Lang A H, Eerola O, Korpilahti P. et al . Practical issues in the clinical application of mismatch negativity.  Ear Hear . 1995;  16 117-129
  • 94 Pekkonen E, Rinne T, Naatanen R. Variability and replicability of the mismatch negativity.  Electroencephalogr Clin Neurophysiol . 1995;  96 546-554
  • 95 Umbricht D, Koller R, Vollenweider F X, Schmid L. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers.  Biol Psychiatry . 2002;  51 400-406
  • 96 Hirvonen J, Jaaskelainen I P, Naatanen R. et al . Adenosine A1/A2a receptors mediate suppression of mismatch negativity by ethanol in humans.  Neurosci Lett . 2000;  278 57-60
  • 97 Schwender D, Rimkus T, Haessler R. et al . Effects of increasing doses of alfentanil, fentanyl and morphine on mid-latency auditory evoked potentials.  Br J Anaesth . 1993;  71 622-628
  • 98 Picton T W, Hillyard S A. Human auditory evoked potentials. II. Effects of attention.  Electroencephalogr Clin Neurophysiol . 1974;  36 191-199
  • 99 Harkrider A W, Champlin C A. Acute effect of nicotine on non-smokers: III. LLRs and EEGs.  Hear Res . 2001;  160 99-110
  • 100 Harkrider A W, Champlin C A, McFadden D. Acute effect of nicotine on non-smokers: I. OAEs and ABRs.  Hear Res . 2001;  160 89-98
  • 101 Colebatch J G. Vestibular evoked potentials.  Curr Opin Neurol . 2001;  14 21-26
  • 102 Matsuzaki M, Murofushi T. Click evoked potentials on the neck of the guinea pig.  Hear Res . 2002;  165 152-155
    >