Semin Thromb Hemost 2003; 29(3): 275-282
DOI: 10.1055/s-2003-40965
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Blood Coagulation Mechanism in Multiple Myeloma

Maurizio Zangari1 , Fariba Saghafifar2 , Paulette Mehta3 , Bart Barlogie2 , Louis Fink3 , Guido Tricot2
  • 1Associate Professor, University of Arkansas for Medical Sciences, Myeloma Institute for Research and Therapy, Little Rock, Arkansas
  • 2Myeloma Institute for Research and Therapy, Little Rock, Arkansas
  • 3The Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
Further Information

Publication History

Publication Date:
30 July 2003 (online)

ABSTRACT

Many cancers are associated with hypercoagulability, including multiple myeloma. At least four possible reasons for hypercoagulability have been described in myeloma patients: interference of immunoglobulins on fibrin structure, procoagulant autoantibody production, effects of inflammatory cytokines on endothelium, and acquired activated protein C (APC) resistance. Moreover, injury to endothelium, either by tumor cells or by chemotherapy, may predispose to thrombosis by causing upregulation of adhesion molecules, allowing adhesion of blood cellular elements (platelets, lymphocyte, neutrophils, and tumor cells, which secrete thrombogenic as well as angiogenic substances). In most cases, the pathogenesis of a thrombotic complication in myeloma patients remains unexplained. Administration of chemotherapy may play a larger role in the thrombotic process than a specific abnormality does because thrombotic complications become more prominent after the start of treatment. The recently reported evidence of a non-factor V Leiden APC resistance has increased our understanding of the pathophysiology of this hypercoagulable state.

REFERENCES

  • 1 Trousseau A. Phlegmasia alba dolens. Clinique Medicale de L'Hotel Dieu de Paris, 2nd ed., Vol 3. Paris: Bailliere 1865: 94
  • 2 Zangari M, Fink L, Desikan K R. et al . Increased risk of thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy.  Blood . 2001;  98 1614-1615
  • 3 Gabriel D A, Muga K, Boothroyd E M. The effect of fibrin structure on fibrinolysis.  J Biol Chem . 1992;  2367 24259-24263
  • 4 Gabriel D A, Smith L A, Folds J D, Davis L, Cancelosi S E. The influence of immunoglobulin (IgG) on the assembly of fibrin gels.  J Lab Clin Med . 1983;  101 545-552
  • 5 Frick P G. Inhibition of conversion of fibrinogen to fibrin by abnormal proteins in multiple myeloma.  Am J Clin Pathol . 1955;  25 12634-12637
  • 6 Lopaciuk S, Snigurowicz J, Rostkowska J, Pniejnia-Olszynski W, Powiertowska-Rezmer M. Disorders in the conversion of fibrinogen to fibrin in patients with multiple myeloma.  Acta Haematol Pol . 1978;  9 157-164
  • 7 Ideguchi H, Suehiro T, Ohike M. et al . Impaired fibrin formation in patients with multiple myeloma presenting the "gelation" phenomenon.  Nippon Ketsueki Gakkai Zasshi . 1988;  51 109-117
  • 8 Lackner H, Heint V, Zucker M B. et al . Abnormal fibrin ultrastructure, polymerization and clot retraction in multiple myeloma.  Br J Haematol . 1970;  18 625-636
  • 9 Cohen L, Amir J, Bern Shaul Y. et al . Plasma cell myeloma associated with an unusual myeloma protein causing impairment of fibrin aggregation and platelet function in a patient with multiple malignancy.  Am J Med . 1970;  48 766-776
  • 10 Carr M E, Dent R M, Carr S L. Abnormal fibrin structure and inhibition of fibrinolysis in patients with multiple myeloma.  J Lab Clin Med . 1996;  128 83-88
  • 11 Carr M E, Zrekert S L. Abnormal clot retraction, altered fibrin structure and normal platelet function in multiple myeloma.  Am J Physiol . 1994;  266 H1195-H1201
  • 12 Klingemann H G, Egbring R, Havemann K. Incomplete fibrin formation and highly elevated factor XIII activity in multiple myeloma.  Scand J Haematol . 1981;  27 253-262
  • 13 O'Kane M J, Wisdom G B, Desai Z R. et al . Inhibition of fibrin monomer polymerization by myeloma immunoglobulin.  J Clin Pathol . 1994;  47 266-268
  • 14 Panzer S, Thaler E. An acquired cryoglobulinemia which inhibits fibrin polymerization in a patient with IgG kappa myeloma.  Haemostasis . 1993;  23 69-76
  • 15 Coleman M, Vigiliano E M, Weksler M E. et al . Inhibition of fibrin monomer polymerization by lambda myeloma globulins.  Blood . 1972;  39 210-223
  • 16 Davey F R, Gordon G B, Boral L I, Gottlieb A J. Gamma globulin inhibition of fibrin clot formation.  Ann Clin Lab Sci . 1976;  6 72-77
  • 17 Duhrsen U, Paar D, Kolbel C. et al . Lupus anticoagulant associated syndrome in benign and malignant systemic disease-analysis of ten observations.  Klin Wochenschr . 1987;  65 852-859
  • 18 Khoory M S, Nesheim M E, Bowie E J. et al . Circulating heparan sulfate proteoglycan anticoagulant from a patient with a plasma cell disorder.  J Clin Invest . 1980;  65 6676-6674
  • 19 Tiagarajan P, Dannenbring R, Matsuura K. et al . Monoclonal antibody light chain with prothrombinase activity.  Biochem Biophys Acta . 2000;  39 6459-6465
  • 20 Deitcher S R, Erban J K, Limentani S A. Acquired free protein S deficiency associated with multiple myeloma: a case report.  Am J Hematol . 1996;  51 319-323
  • 21 Yasin Z, Qyuick D, Thiagarajan P. et al . Light chain paraproteins with lupus anticoagulant activity.  Am J Hematol . 1999;  62 99-102
  • 22 Belliotti V, Gamba G, Merlini G. et al . Study of three patients with monoclonal gammopathies and lupus like anticoagulants.  Br J Haematol . 1989;  73 221-227
  • 23 Bokarewa M I, Blombäck M, Egberg N. et al . A new variant of interaction between phospholipid antibodies and the protein C system.  Blood Coagul Fibrinolysis . 1994;  5 37-46
  • 24 Male C, Mitchell L, Julian J. et al . Acquired APC resistance is associated with lupus anticoagulants and thrombotic events in pediatric patients with systemic lupus erythematosis.  Blood . 2000;  97 844-849
  • 25 Glueck H I, Hong R. A circulating anticoagulant in gamma-IA-multiple myeloma: its modification by penicillin.  J Clin Invest . 1965;  44 1866-1881
  • 26 Moliri H, Hisasnaga S, Mishima A. et al . Autoantibody inhibits binding of von Willebrand factor to glycoprotein Ib and collagen in multiple myeloma: recognition sites present on the Al loop and A3 domains of von Willebrand factor.  Blood Coagul Fibrinolysis . 1998;  9 91-97
  • 27 Tricot G. New insights into role of microenvironment in multiple myeloma.  Lancet . 2000;  355 248-250
  • 28 Esmon C T. Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation.  Crit Care Med . 2001;  (Suppl 7) S48-51
  • 29 Esmon C T. Possible involvement of cytokines in diffuse intravascular coagulation and thrombosis.  Baillieres Best Pract Res Clin Haemotol . 1999;  Sept.12 343-359
  • 30 Lorente J A, Garcia-Frade L J, Landin L. et al . Time course of hemostastic abnormalities in sepsis and its relation to outcome.  Chest . 1993;  103 1536-1542
  • 31 Araham E. Tissue factor inhibition and clinical trial results of tissue factor pathway inhibitor in sepsis.  Crit Care Med . 2000;  28(Suppl 9) S31-33
  • 32 Mack M, Pfirstinger J, Weber C. et al . Chondroitin sulfate A released from platelets blocks RANTES presentation on cell surfaces and RANTES-dependent firm adhesion of leukocytes.  Eur J Immunol . 2002;  32 1012-1020
  • 33 von Hundelshausen P, Weber K SC, Huo Y. et al . RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium.  Circulation . 2001;  103 1772-1777
  • 34 Stouthard J M, Levi M, Hack C E. et al . Interleukin-6 stimulates coagulation, not fibrinolysis in humans.  Thromb Haemost . 1996;  76 738-742
  • 35 Amrani D L. Regulation of fibrinogen biosynthesis: glucocorticoid and interleukin-6 control.  Blood Coagul Fibrinolysis . 1990;  1 443-446
  • 36 Liu Z, Fuller G M. Detection of a novel transcription factor for the A alpha fibrinogen gene in response to interleukin-6.  J Biol Chem . 1995;  270 7580-7586
  • 37 Neuman F J, Ott I, Marx N. et al . Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity.  Arterioscler Thromb Vasc Biol . 1997;  17 3399-3405
  • 38 Heinrich P C, Castell J V, Andus T. Interleukin-6 and the acute phase response.  Biochem J . 1990;  265 621-636
  • 39 Cermak J, Key N S, Bach R R. et al . C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor.  Blood . 1993;  82 513-520
  • 40 Stirling D, Hannant W A, Ludlam C A. Transcriptional activation of the factor VIII gene in liver cell lines by interleukin-6.  Thromb Haemost . 1998;  79 74-78
  • 41 Begbie M, Notley C, Tinlin S, Sawyer L, Lillicrap D. The factor VIII acute phase response requires the participation of NfkappaB and C/EBP.  Thromb Haemost . 2000;  84 216-222
  • 42 Marlar R A. The protein C system-how complex is it?.  Thromb Haemost . 2001;  85 756-757
  • 43 Fernandez J A, Heeb M J, Griffin J H. Identification of residues 413-433 of plasma protein S as essential for binding to C4b-binding protein.  J Biol Chem . 1989;  268 16788-16794
  • 44 Dahlbäck B. Inhibition of protein C, a cofactor function of human and bovine protein S by C4b-binding protein.  J Biol Chem . 1986;  26L 12022-12027
  • 45 van de Poel H R, Meijers J C, Bouma B N. C4b binding protein inhibits the factor V dependent but not the factor V independent cofactor activity of protein S in the APC mediated-inaction of factor VIIIa.  Thromb Haemost . 2001;  85 761-765
  • 46 van de Poel H R, Meijers J C, Rosing J, Tans G, Bouma B N. C4b-binding protein protects coagulation factor Va from inactivation by APC.  Biochemistry . 2000;  39 14543-14538
  • 47 Hampton K K, Preston F E, Greaves M. Resistance to APC (Letter).  N EngI J Med . 1994;  331 130
  • 48 Bokarewa M L, Blombäck M, Bremme K. Phospholipid antibodies and resistance to APC in women with thrombophilia.  Blood Coagul Fibrinolysis . 1995;  6 417-422
  • 49 Busowski J D, Jenkins A D, Hale E U. et al . Activated protein C resistance and lupus anticoagulant in pregnancy.  J Matern Fetal Med . 1999;  8 298-299
  • 50 Haim N, Lanir N, Hoffman R. et al . Acquired APC resistance is common in cancer patients and is associated with venous thromboembolism.  Am J Med . 2000;  110 91-96
  • 51 Zangari M, Anaissie E, Badros A. et al . Thrombotic complications in myeloma patients receiving thalidomide in combination with chemotherapy (Abst).  Thromb Haemost . 2001;  (Suppl) P2192
  • 52 Barlogie B, Desikan R, Eddlemon P. et al . Extended survival in advanced and refractory multiple myeloma after single agent thalidomide: identification of prognostic factors in a phase II study of 169 patients.  Blood . 2001;  98 492-494
  • 53 van Giezen J J, Brakkee J G, Dreteler G H, Bouma B N, Jansen J W. Dexamethasone affects platelet aggregation and fibrinolytic activity in rats at different doses which is reflected by their effect on arterial thrombosis.  Blood Coagul Fibrinolysis . 1994;  5 249-255
  • 54 Rajashree S, Puvanakrishnan R. Dexamethasone induced alterations in the levels of proteases involved in blood pressure homeostasis and blood coagulation in rats.  Mol Cell Biochem . 1999;  197 203-208
  • 55 Kotamraju S, Konorev E A, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species.  J Biol Chem . 2000;  275 33585-33592
  • 56 Kalivendi S V, Kotamraju S, Zhao H, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase: effect of antiapoptotic antioxidants and calcium.  J Biol Chem . 2001;  276 47266-44276
  • 57 Zangari M, Siegel E, Anaissie E. et al . Risk factors for deep vein thrombosis in a large group of myeloma patients treated with thalidomide: The Arkansas Experience (Abst).  Blood . 2001;  98 681
    >