Zusammenfassung
Trotz der in vielen Fällen klaren molekulargenetischen Klassifizierung der so genannten
Systematrophien sind elektrophysiologische/neurophysiologische Untersuchungen bei
diesen Erkrankungen weiterhin von beträchtlicher Bedeutung. Dies bezieht sich auf
die phänomenologische Beschreibung, auf die Differenzialdiagnose insbesondere bei
Erkrankungsbeginn, sowie auf die durchaus vielen genetisch nicht oder noch nicht zu
definierenden Fälle und Krankheiten. Außerdem haben diese Methoden einen Stellenwert
für die Abschätzung der Prognose im Verlauf. Der vorliegende Artikel gibt eine Übersicht
über elektrophysiologische/neurophysiologische Befunde, wie sie bei den so genannten
Systematrophien, insbesondere unter den oben genannten Aspekten, erwartet werden können.
Abstract
Electrophysiological/neurophysiological examinations continue to be most important
in system atrophies in spite of the fact that in many cases these diseases can be
clearly classified in respect of molecular genetics. These examinations refer in particular
to the phenomenological description and to the differential diagnosis especially at
the onset of the disease as well as to the genetically not or not yet identifiable
individual cases and diseases. Besides, these methods help to say something about
the future course of the diseases. The following article reviews the electrophysiological/neurophysiological
findings that may be expected in the diseases known as „system atrophies” with particular
reference to the aspects mentioned above.
Key words
System atrophies - spinocerebellar atrophy - friedreich ataxia - multiple system atrophy
- progressive supranuclear palsy
Literatur
- 1
Van de Warrenburg B PC, Sinke R J, Verschuuren-Bemelmans C C. et al .
Spinocerebellar ataxias in the Netherlands. Prevalence and age at onset variance analysis.
Neurology.
2002;
58
702-708
- 2
Riess O, Schmidt T, Schöls L.
Autosomal dominant vererbte spinozerebellare Ataxien: Klinik, Genetik und Pathogenese.
Dt Ärztebl.
2001;
98
1546-1558
- 3
Subramony S H, Filla A.
Autosomal dominant spinocerebellar ataxias ad infinitum?.
Neurology.
2001;
56
287-289
- 4
Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen J T, Riess O.
Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined
subtypes?.
Ann Neurol.
1997;
42
924-932
- 5
Gomez C M, Thompson R M, Gammack J T, Perlaman S L, Dobyns W B, Truwit C L, Zee D S,
Clark H B, Anderson J H.
SCA6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable
age of onset.
Ann Neurol.
1997;
42
933-950
- 6
Benomar A, Krols L, Stevanin G. et al .
The gene for autosomal dominant ataxia with pigmentary macula dystrophy maps to chromosome
3p12 - 21.1.
Nat Genet.
1995;
10
84-88
- 7
Gouw L G, Kaplan C D, Haines J H. et al .
Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome
3p.
Nat Genet.
1995;
10
89-93
- 8
Benton C S, de Silva R, Rutledge S L, Bohlega S, Ashizawa T, Zohgbi H Y.
Molecular and clinical studies in SCA7 define a broad clinical spectrum and the infantile
phenotype.
Neurology.
1998;
51
1081-1086
- 9
Harding A E.
„Idiopathic” late onset cerebellar ataxia. A clinical study of 36 cases.
J Neurol Sci.
1981;
51
259-271
- 10
Klockgether T, Schroth G, Dichgans J.
Idiopathic cerebellar ataxia of late onset: natural history and MRI morphology.
J Neurol Neurosurg Psych.
1990;
53
297-305
- 11
Chamberlain S, Shaw J, Rowland A. et al .
Mapping of mutation causing Friedreich's ataxia to human chromosome 9.
Nature.
1988;
334
248-250
- 12
Babcock R, de Silva D, Oaks R. et al .
Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin.
Science.
1997;
276
1709-1712
- 13
Campuzano V, Montermini L, Lutz Y. et al .
Frataxin is reduced in Friedreich's ataxia patients and is associated with mitochondrial
membranes.
Hum Mol Genet.
1997;
6
1771-1780
- 14
Klockgether T, Chamberlain S, Wüllner U. et al .
Late-onset Friedreich's ataxia: molecular genetics, clinical neurophysiology, and
magnetic resonance imaging.
Arch Neurol.
1993;
50
803-806
- 15
Klockgether T, Zühlke C, Schulz J B, Bürk K, Fetter M, Dittmann H, Skalej M, Dichgans J.
Friedreich's ataxia with retained tendon reflexes: Molecular genetics, clinical neurophysiology,
and magnetic resonance imaging.
Neurology.
1996;
46
118-121
- 16
Dürr A, Cossee M, Agid Y. et al .
Clinical and genetic abnormalities in patients with Friedreichs ataxia.
N Engl J Med.
1996;
335
1169-7115
- 17
Harding A E.
Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis
of early diagnostic criteria and intrafamilial clustering of clinical features.
Brain.
1981;
104
589-620
- 18
Gilman S, Lown P A, Quinn N. et al .
Consensus statement on the diagnosis of multiple system atrophy.
J Neurol Sci.
1999;
163
94-98
- 19
Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin R C. et al .
Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski
Syndrome): Report of the NINDS-SPSP international workshop.
Neurology.
1996;
47
1-9
- 20
Fink J K, Heimann-Patterson T. et al .
Hereditary spastic paraplegia: Advances in genetic research.
Neurology.
1996;
46
1507-1514
- 21
McDermott C J, White K, Bushby K, Shaw P J.
Hereditary spastic paraparesis: a review of new developments.
J Neurol Neurosurg Psychiatry.
2000;
69
150-160
- 22
Figlewicz D A, Bird T D.
„Pure” hereditary spastic paraplegias: The story becomes complicated.
Neurology.
1999;
53
5-7
- 23
Peretti A, Santoro L, Lanzillo B. et al .
Autosomal dominant cerebellar ataxia type I: multimodal electrophysiological study
and comparison between SCA1 and SCA2 patients.
J Neurol Sci.
1996;
142
45-53
- 24
Abele M, Bürk K, Andres F, Topka H. et al .
Autosomal dominant cerebellar ataxia type I: Nerve conduction and evoked potential
studies in families with SCA1, SCA2 and SCA3.
Brain.
1997;
120
2141-2148
- 25
Yokota T, Sasaki H, Iwabuchi K, Shiojiri T, Yoshino A, Otagiri A, Inaba A, Yuasa T.
Electrophysiological features of central motor conduction in spinocerebellar atrophy
type 1, type 2, and Machado-Joseph disease.
J Neurol Neurosurg Psychiatry.
1998;
65
530-534
- 26
Schöls L, Amoiridis G, Langkafel M, Schols S, Przuntek H.
Motor evoked potentials in the spinocerebellar ataxias type 1 and type 3.
Muscle Nerve.
1997;
20
226-228
- 27
Restivo D A, Giuffrida S, Rapisarda G. et al .
Central motor conduction to lower limb after transcranial magnetic stimulation in
spinocerebellar ataxia type 2 (SCA2).
Clin Neurophysiol.
2000;
111
630-635
- 28
Soong B W, Lin K P.
An electrophysiologic and pathologic study of peripheral nerves in individuals with
Machado-Joseph disease.
Zhonghua Yi Xue Za Zhi (Taipeh).
1998;
61
181-187
- 29
Schöls L, Krüger R, Amoiridis G, Przuntek H, Epplen J T, Riess O.
Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds.
J Neurol Neurosurg Psychiatry.
1998;
64
73-76
- 30
Moschner C, Perlman S, Baloh R W.
Comparison of oculomotor findings in the progressive ataxia syndromes.
Brain.
1994;
117
15-25
- 31
Wessel K, Moschner C, Wandinger K-P, Kömpf D, Heide W.
Oculomotor testing in the differential diagnosis of degenerative ataxic disorders.
Arch Neurol.
1998;
55
949-956
- 32
Büttner N, Geschwind D, Jen J C, Perlman S, Pulst S M, Baloh R W.
Oculomotor phenotypes in autosomal dominant ataxias.
Arch Neurol.
1998;
55
1353-1357
- 33
Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, Klockgether T.
Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families
with SCA1, SCA2, and SCA3.
J Neurol.
1999;
246
789-797
- 34
Klostermann W, Zühlke C, Heide W, Kompf D, Wessel K.
Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1.
J Neurol.
1997;
244
105-111
- 35
Oh A K, Jacobson K M, Jen J C, Baloh R W.
Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia
type 7.
Ann Neurol.
2001;
49
801-804
- 36
Durig J S, Jen J C, Demer J L.
Ocular motility in genetically defined autosomal dominant cerebellar ataxia.
Am J Ophthalmol.
2002;
133
718-721
- 37
Takeichi N, Fukushima K, Sasaki H, Yabe I, Tashiro K, Inuyama Y.
Dissociation of smooth pursuit and vestibulo-ocular reflex cancellation in SCA-6.
Neurology.
2000;
22 (54)
860-866
- 38 Wessel K, Diener H C, Dichgans J.
Zum Verlauf von Heredoataxien. In: Fischer PA, Baas H, Enzensberger W (Hrsg) Verhandlungen der Deutschen Gesellschaft
für Neurologie, Band 5. Berlin, New York, London, Paris; Springer Verlag 1989: 823-826
- 39
Klockgether T, Ludtke R, Kramer B, Abele B, Bürk K, Schöls L, Riess O, Laccone F,
Boesch S, Lopes-Cendes I, Brice A, Inzelberg R, Zilber N, Dichgans J.
The natural history of degenerative ataxia: a retrospective study in 466 patients.
Brain.
1998;
121
589-600
- 40
Wessel K, Huss G-P, Brückmann H, Kömpf D.
Follow-up of neurophysiological tests and CT in late-onset cerebellar ataxia and multiple
system atrophy.
J Neurol.
1993;
240
168-176
- 41
Claus D, Harding A E, Hess C W. et al .
Central motor conduction in degenerative ataxic disorders: a magnetic stimulation
study.
J Neurol Neurosurg Psychiatr.
1988;
51
790-795
- 42 Huss G P, Wessel K, Engel P, Kömpf K.
Neurophysiological findings in Friedreich's ataxia. In: Mauritz K-H, Hömberg V (eds) Neurologische Rehabilitation 2. Bern; Verlag Hans
Huber 1992
- 43
Cruz Martínez A, Anciones B.
Central motor conduction to upper and lower limbs after magnetic stimulation of the
brain and peripheral nerve abnormalities in 20 patients with Friedreich's ataxia.
Acta Neurol Scand.
1992;
85
323-326
- 44
Schöls L, Amoiridis G, Przuntek H. et al .
Friedreich's ataxia: Revision of the phenotype according to molecular genetics.
Brain.
1997;
120
2131-2140
- 45
Cruz Martínez A, Palau F.
Central motor conduction time by magnetic stimulation of the cortex and peripheral
nerve conduction follow-up studies in Friedreich's ataxia.
Electroencephalogr Clin Neurophysiol.
1997;
105
458-461
- 46
Santoro L, Perretti A, Lanzillo B, Coppola G, De Joanna G, Manganelli F, Cocozza S,
De Michele G, Filla A, Caruso G.
Influence of GAA expansion size and disease duration on central nervous system impairment
in Friedreich's ataxia: contribution to the understanding of the pathophysiology of
the disease.
Clin Neurophysiol.
2000;
111
1023-1030
- 47
Coppola G, de Michele G, Cavalcanti F. et al .
Why do some Friedreich's ataxia patients retain tendon reflexes. A clinical, neurophysiological
and molecular study?.
J Neurol.
1999;
246
353-357
- 48
Pedersen L, Trojaburg W.
Visual, auditory and somatosensory pathway involvement in hereditary cerebellar ataxia,
Friedreich's ataxia and familial spastic paraplegia.
Electroencephal Clin Neurophysiol.
1981;
52
283-297
- 49
Beltinger A, Riffel B, Stöhr M.
Somatosensory evoked potentials following median and tibial nerve stimulation in patients
with Friedreich's ataxia.
Eur Arch Psychiatr Neurol Sci.
1987;
236
358-363
- 50
Santoro L, Perretti A, Filla A, De Michele G, Lanzillo B, Barbieri F, Crisci C, Rippa P G,
Caruso G.
Is early onset cerebellar ataxia with retained tendon reflexes identifiable by electrophysiologic
and histologic profile? A comparison with Friedreich's ataxia.
J Neurol Sci.
1992;
113
43-49
- 51
Abele M, Schulz J B, Bürk K. et al .
Evoked potentials in multiple system atrophy (MSA).
Acta Neurol Scand.
2000;
101
111-115
- 52
Abbruzzese G, Marchese R, Trompetto C.
Sensory and motor evoked potentials in multiple system atrophy: A comparative study
with Parkinson's disease.
Mov Disord.
1997;
12
315-321
- 53
Cruz Martínez A, Arpa J, Alonso M, Palomo F, Villoslada C.
Transcranial magnetic stimulation in multiple system and late onset cerebellar atrophies.
Acta Neurol Scand.
1995;
92
218-224
- 54
Mondelli M, Rossi A, Scarpini C, Guazzi G C.
Motor evoked potentials by magnetic stimulation in hereditary and sporadic ataxia.
Electromyogr Clin Neurophysiol.
1995;
35
415-424
- 55 Quinn N.
Multiple system atrophy. In: Marsden CD, Jahn S (eds) Movement disorders 3. London; Butterworths 1994
- 56
Yamamoto M, Kachi T, Sobue G.
Pain-related and electrically stimulated somatosensory evoked potentials in patients
with Machado-Joseph-disease and Multiple System Atrophy.
Internal Medicine.
1997;
36
550-555
- 57
Pramstaller P P, Wenning G K, Smith S JM, Beck R O, Quinn N P, Fowler C J.
Nerve conduction studies, skeletal muscle EMG, and sphincter EMG in multiple system
atrophy.
J Neurol Neurosurg Psychiatry.
1995;
58
618-621
- 58
Abele M, Schulz J B, Bürk K. et al .
Nerve conduction studies in multiple system atrophy.
Eur Neurol.
2000;
43
221-223
- 59
Kamitani T, Kuroiwa Y, Wang L, Li M, Suzuki Y, Takahashi T, Ikegami T, Matsubara S.
Visual event-related potential changes in two subtypes of multiple system atrophy,
MSA-C and MSA-P.
J Neurol.
2002;
249
975-982
- 60
Stocci F, Carbone A, Inghilleri M. et al .
Urodynamic and neurophysiological evaluation in Parkinson's disease and multiple system
atrophy.
J Neurol Neurosurg Psychiatry.
1997;
62
507-511
- 61
Palace J, Chandiramani V A, Fowler C J.
Value of sphincter electromyography in the diagnosis of multiple system atrophy.
Muscle Nerve.
1997;
20
1396-1403
- 62
Sakakibara R, Hattori T, Uchiyama T, Yamanishi T.
Videourodynamic and sphincter motor unit potential analyses in Parkinson's disease
and multiple system atrophy.
J Neurol Neurosurg Psychiatry.
2001;
71
600-606
- 63
Vodušek D B.
Sphincter EMG and differential diagnosis of multiple system atrophy.
Mov Disorders.
2001;
16 (4)
600-607
- 64
Libelius R, Johansson F.
Quantitative electromyography of the external anal sphincter in Parkinson's disease
and multiple system atrophy.
Muscle Nerve.
2000;
23
1250-1256
- 65
Valldeoriola F, Valls-Solé J, Tolosa E S, Marti M J.
Striated anal sphincter denervation in patients with progressive supranuclear palsy.
Mov Disorders.
1995;
10
550-555
- 66
Davie C A, Wenning G K, Barker G J. et al .
Differentiation of multiple system atrophy from idiopathic Parkinson's disease using
proton magnetic resonance spectroscopy.
Ann Neurol.
1995;
37
204-210
- 67
Burn D J, Sawle G V, Brooks D J.
Differential diagnosis of Parkinson's disease, multiple system atrophy, and Steele-Richardson-Olszewski
syndrome: Discriminant analysis of striatal 18F-dopa PET data.
J Neurol Neurosurg Psychiatry.
1994;
57
278-284
- 68
Asato R, Akiguchi I, Masunaga S, Hashimoto N.
Magnetic resonance imaging distinguishes progressive supranuclear palsy from multiple
system atrophy.
J Neural Transm.
2000;
107
1427-1436
- 69
Schocke M FH, Seppi K, Esterhammer R. et al .
Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy
from PD.
Neurology.
2002;
58
575-580
- 70
Horimoto Y, Aiba I, Yasuda T, Ohkawa Y, Katayama T, Yokokawa Y, Goto A, Ito Y.
Longitudinal MRI study of multiple system atrophy - when do the findings appear, and
what is the course.
J Neurol.
2002;
249
847-854
- 71
Yoshita M.
Differentiation of idiopathic Parkinson's disease from striatonigral degeneration
and progressive supranuclear palsy using iodine-123 meta-iodobenzylguanidine myocardial
scintigraphy.
J Neurol Sci.
1998;
155
60-67
- 72
Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H.
123I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson's disease.
J Neurol Neurosurg Psychiatry.
1999;
67
189-194
- 73
Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking C H.
Cardiac uptake of [123I]MIBG separates Parkinson's disease from multiple system atrophy.
Neurology.
1999;
53
1020-1025
- 74
Goldstein D S, Holmes C, Cannon R O, Eisenhofer G, Kopin I J.
Sympathetic cardioneuropathy in dysautonomias.
N Engl J Med.
1997;
336
696-702
- 75
Kimber J R, Watson L, Mathias C J.
Distinction of idiopathic Parkinson's disease from multiple system atrophy by stimulation
of growth hormone release with clonidine.
Lancet.
1997;
349
1877-1881
- 76
Kimber J R, Mathias C J, Lees A J, Bleasdale-Barr K, Chang H S, Churchyard A, Watson L.
Physiological, pharmacological and neurohormonal assessment of autonomic function
in progressive supranuclear palsy.
Brain.
2000;
123
1422-1430
- 77
Clarke C E, Ray P S, Speller M.
Failure of the clonidine growth hormone stimulation test to differentiate multiple
system atrophy from early or advanced Parkinson's disease.
Lancet.
1999;
353
1329-1330
- 78
Tranchant C, Guiraud-Chaumeil C, Exhaniz-Laguna A, Warter J M.
Is clonidine growth hormone stimulation a good test to differentiate multiple system
atrophy from idiopathic Parkinson's disease?.
J Neurol.
2000;
415
853-856
- 79
Valls-Solé J.
Neurophysiological characterization of parkinsonian syndromes.
Neurophysiol Clin.
2000;
30
352-367
- 80
Kofler M, Muller J, Reggiani L, Wenning G K.
Somatosensory evoked potentials in progressive supranuclear palsy.
J Neurol Sci.
2000;
179 (S 1 - 2)
85-916
- 81
Abbruzzese G, Tabaton M, Morena M, Dall'Agata D, Favale E.
Motor and sensory evoked potentials in progressive supranuclear palsy.
Mov Disord.
1991;
6
49-54
- 82
Miwa H, Mizuno Y.
Enlargements of somatosensory-evoked potentials in progressive supranuclear palsy.
Acta Neurol Scand.
2002;
106
209-212
- 83
Miwa H, Mori H, Abe K, Hoshino I, Mizuno Y.
Corticobasal degeneration and progressive supranuclear palsy - differentiation by
somatosensory-evoked potentials.
No To Shinkei.
1996;
48
253-257
- 84
Tolosa E S, Zeese J A.
Brainstem auditory evoked responses in progressive supranuclear palsy.
Ann Neurol.
1979;
6
369
- 85
Laffont F, Agar N, Zuber M, Minz M, Roux S, Bruneau N, Meunier S, Cathala H P.
Auditory evoked responses (AER) and augmenting-reducing phenomenon in patients with
progressive supranuclear palsy (PSP).
Neurophysiol Clin.
1991;
21
149-160
- 86
Pakalnis A, Drake M E, Huber S, Paulson G, Phillips B.
Central conduction time in progressive supranuclear palsy.
Electromyogr Clin Neurophysiol.
1992;
32
41-42
- 87
Langheinrich T, Tebartz van Elst L, Lagreze W A, Bach M, Lucking C H, Greenlee M W.
Visual contrast response functions in Parkinson's disease: evidence from electroretinograms,
visually evoked potentials and psychophysics.
Clin Neurophysiol.
2000;
111
66-74
- 88
Rottach K G, Riley D E, DiScenna A O, Zivotofsky A Z, Leigh R J.
Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes.
Ann Neurol.
1996;
39
368-377
- 89
Vidailhet M, Rivaud S, Gouider-Khouja N. et al .
Eye movements in parkinsonian syndromes.
Ann Neurol.
1994;
35
420-426
- 90
Das V, Leigh R J.
Visual-vestibular interaction in progressive supranuclear palsy.
Vision Res.
2000;
40
2077-2081
- 91
Valls-Solé J, Valldeoriola F, Tolosa E, Marti M J.
Distinctive abnormalities of facial reflexes in patients with progressive supranuclear
palsy.
Brain.
1997;
120
1877-1883
- 92
Vidailhet M, Rothwell J C, Thompson P D, Lees A J, Marsden C D.
The auditory startle response in the Steele-Richardson-Olszewski syndrome and Parkinson's
disease.
Brain.
1992;
115
1181-1192
- 93
Valldeoriola F, Valls-Sole J, Tolosa E, Ventura P J, Nobbe F A, Marti M J.
Effects of a startling acoustic stimulus on reaction time in different parkinsonian
syndromes.
Neurology.
1998;
51
1315-1320
- 94
Takeda M, Tachibana H, Okuda B, Kawabata K, Sugita M.
Electrophysiological comparison between corticobasal degeneration and progressive
supranuclear palsy.
Clin Neurol Neurosurg.
1998;
100
94-98
- 95
Wang L, Kuroiwa Y, Kamitani T, Li M, Takahashi T, Suzuki Y, Shimamura M, Hasegawa O.
Visual event-related potentials in progressive supranuclear palsy, corticobasal degeneration,
striatonigral degeneration, and Parkinson's disease.
J Neurol.
2000;
247
356-363
- 96
Schady W, Dick J P, Sheard A, Crampton S.
Central motor conduction studies in hereditary spastic paraplegia.
J Neurol Neurosurg Psychiatry.
1991;
54
775-779
- 97
Pelosi L, Lanzillo B, Perretti A, Santoro L, Blumhardt L, Caruso G.
Motor and somatosensory evoked potentials in hereditary spastic paraplegia.
J Neurol Neurosurg Psychiatry.
1991;
54
1099-1102
- 98
Claus D, Waddy H M, Harding A E, Murray N M, Thomas P K.
Hereditary motor and sensory neuropathies and hereditary spastic paraplegia: a magnetic
stimulation study.
Ann Neurol.
1990;
28
43-49
- 99
Polo J M, Combarros O, Berciano J.
Hereditary „pure” spastic paraplegia: a study of nine families.
J Neurol Neurosurg Psychiatry.
1993;
56
175-181
- 100
Di Lazarro V, Oliviero A, Profice P, Ferrara L, Saturno E, Pilato F, Tonali P.
The diagnostic value of motor evoked potentials.
Clin Neurophysiol.
1999;
110
1297-1307
- 101
Nielsen J E, Krabbe K, Jennum P, Koefoed P, Jensen L N, Fenger K, Eiberg H, Hasholt L,
Werdelin L, Sorensen S A.
Autosomal dominant pure spastic paraplegia: a clinical, paraclinical, and genetic
study.
J Neurol Neurosurg Psychiatry.
1998;
64
61-66
- 102
Cruz Martínez A, Tejada J.
Central motor conduction in hereditary motor and sensory neuropathy and hereditary
spastic paraplegia.
Electromyogr clin Neurophysiol.
1999;
39
331-335
- 103
Nielsen J E, Jennum P, Fenger K, Sorensen S A, Fuglsang-Frederiksen A.
Increased intracortical facilitation in patients with autosomal dominant pure spastic
paraplegia linked to chromosome 2p.
Eur J Neurol.
2001;
8
335-339
- 104
Aalfs C M, Koelman J H, Aramideh M, Bour L J, Bruyn R P, Ongerboer de Visser B W.
Posterior tibial nerve somatosensory evoked potentials in slowly progressive spastic
paraplegia: a comparative study with clinical signs.
J Neurol.
1993;
240
351-356
- 105
Imai T, Minami R, Kameda K, Ishikawa Y, Okabe M, Nagaoka M, Matsumoto H.
Attenuated SEPs with no latency shifts in a family with hereditary spastic paraplegia.
Pediatr Neurol.
1990;
6
13-16
- 106
Bruyn R P, van Dijk J G, Scheltens P, Boezeman E H, Ongerboer de Visser B W.
Clinically silent dysfunction of dorsal columns and dorsal spinocerebellar tracts
in hereditary spastic paraparesis.
J Neurol Sci.
1994;
125
206-211
- 107
Thomas P K, Jefferys J G, Smith I S, Loulakakis D.
Spinal somatosensory evoked potentials in hereditary spastic paraplegia.
J Neurol Neurosurg Psychiatry.
1981;
44
243-246
- 108
Schady W, Sheard A.
A quantitative study of sensory function in hereditary spastic paraplegia.
Brain.
1990;
113
709-720
- 109
Coutinho P, Barros J, Zemmouri R, Guimaraes J, Alves C, Chorao R, Lourenco E, Ribeiro P,
Loureiro J L, Santos J V, Hamri A, Paternotte C, Hazan J, Silva M C, Prud'homme J F,
Grid D.
Clinical heterogeneity of autosomal recessive spastic paraplegias: analysis of 106
patients in 46 families.
Arch Neurol.
1999;
56
943-949
- 110
Livingstone I R, Mastaglia F L, Edis R, Howe J W.
Pattern visual evoked responses in hereditary spastic paraplegia.
J Neurol Neurosurg Psychiatry.
1981;
44
176-178
- 111
Panegyres P K, Purdie G H, Hamilton-Bruce M A, Rischbieth R H.
Familial spastic paraplegia: an electrophysiological study of central sensory conduction
pathways.
Clin Exp Neurol.
1991;
28
97-111
- 112
Tedeschi G, Allocca S, Di Costanzo A, Carlomagno S, Merla F, Petretta V, Toriello A,
Tranchino G, Ambrosio G, Bonavita V.
Multisystem involvement of the central nervous system in Strumpell's disease. A neurophysiological
and neuropsychological study.
J Neurol Sci.
1991;
103
55-60
- 113
Sawhney I M, Bansal S K, Upadhyay P K, Chopra J S.
Evoked potentials in hereditary spastic paraplegia.
Ital J Neurol Sci.
1993;
14
425-428
- 114
Dürr A, Brice A, Serdary M. et al .
The phenotype of „pure” autosomal dominant spastic paraplegia.
Neurology.
1994;
44
1274-1277
- 115
Orr H T, Chung M Y, Banfi S, Kwiatkowski T J, Servadio A, Beaudet A L, McCall A E,
Duvick L A, Ranum L P, Zoghbi H Y. et al .
Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.
Nat Genet.
1993;
4
221-226
- 116
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier J M, Weber C, Mandel J L,
Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A.
Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity
to expanded CAG/glutamine repeats.
Nat Genet.
1996;
14
285-291
- 117
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S,
Nishimura M, Akiguchi I. et al .
CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1.
Nat Genet.
1994;
8
221-228
- 118
Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert M F, Kaplan C, Ptacek L J.
Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical
description and genetic localization to chromosome 16q22.1.
Am J Hum Genet.
1996;
59
392-399
- 119
Ranum L P, Schut L J, Lundgren J K, Orr H T, Livingston D M.
Spinocerebellar ataxia type 5 in a family descended from the grandparents of President
Lincoln maps to chromosome 11.
Nat Genet.
1994;
8
280-284
- 120
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton D W, Amos C, Dobyns W B, Subramony S H,
Zoghbi H Y, Lee C C.
Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions
in the alpha 1A-voltage-dependent calcium channel.
Nat Genet.
1997;
15
62-69
- 121
David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F,
Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel J L,
Brice A.
Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion.
Nat Genet.
1997;
17
65-70
- 122
Koob M D, Moseley M L, Schut L J, Benzow K A, Bird T D, Day J W, Ranum L P.
An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8).
Nat Genet.
1999;
21
379-384
- 123
Nemes J P, Benzow K A, Moseley M L, Ranum L P, Koob M D.
The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a
novel actin-binding protein (KLHL1).
Hum Mol Genet.
2000;
9
1543-1451
- 124
Matsuura T, Yamagata T, Burgess D L, Rasmussen A, Grewal R P, Watase K, Khajavi M,
McCall A E, Davis C F, Zu L, Achari M, Pulst S M, Alonso E, Noebels J L, Nelson D L,
Zoghbi H Y, Ashizawa T.
Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type
10.
Nat Genet.
2000;
26
191-194
- 125
Worth P F, Giunti P, Gardner-Thorpe C, Dixon P H, Davis M B, Wood N W.
Autosomal dominant cerebellar ataxia type III: linkage in a large British family to
a 7.6-cM region on chromosome 15q14 - 21.3.
Am J Hum Genet.
1999;
65
420-426
- 126
O'Hearn E, Holmes S E, Calvert P C, Ross C A, Margolis R L.
SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat
expansion.
Neurology.
2001;
56
299-303
- 127
Herman-Bert A, Stevanin G, Netter J C, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q,
Schalling M, Durr A, Brice A.
Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3 - q13.4 in a family with
autosomal dominant cerebellar ataxia and mental retardation.
Am J Hum Genet.
2000;
67
229-235
- 128
Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, Takada A, Shiraishi K,
Takiyama Y, Nishizawa M, Kaneko J, Tanaka H, Tsuji S, Tashiro K.
A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked
by D19S206 and D19S605 on chromosome 19q13.4-qter.
Ann Neurol.
2000;
48
156-163
- 129
Storey E, Gardner R J, Knight M A, Kennerson M L, Tuck R R, Forrest S M, Nicholson G A.
A new autosomal dominant pure cerebellar ataxia.
Neurology.
2001;
57
1913-1915
- 130
Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K,
Sakai K, Sasazuki T, Kira J.
A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1
- 24.1.
Neurology.
2001;
57
96-100
- 131
Verbeek D S, Schelhaas J H, Ippel E F, Beemer F A, Pearson P L, Sinke R J.
Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar
ataxia family on chromosome region 1p21 - q21.
Hum Genet.
2002;
111
388-393
- 132
Vuillaume I, Devos D, Schraen-Maschke S, Dina C, Lemainque A, Vasseur F, Bocquillon G,
Devos P, Kocinski C, Marzys C, Destee A, Sablonniere B.
A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3 - p15.1.
Ann Neurol.
2002;
52
666-670
Prof. Dr. K. Wessel
Neurologische Klinik · Städtisches Klinikum
Salzahlumer Straße 90
38126 Braunschweig