Aktuelle Neurologie 2003; 30(2): 51-58
DOI: 10.1055/s-2003-37568
Neues in der Neurologie
© Georg Thieme Verlag Stuttgart · New York

Morbus Parkinson und Neuroprotektion: Traum oder Realität?

Parkinson's Disease and Neuroprotection: Dream or Reality?J.  Schwarz1 , H.  Reichmann2
  • 1Klinik und Poliklinik für Neurologie, Universität Leipzig
  • 2Klinik und Poliklinik für Neurologie, Technische Universität Dresden
Wir danken Frau Ulrike Tetzlaff für ihre Hilfe bei der Erstellung des Manuskriptes
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
03. März 2003 (online)

Zusammenfassung

Neuroprotektive Therapiestrategien des Morbus Parkinson werden seit vielen Jahren in den verschiedenen In-vitro- und In-vivo-Modellen mit Erfolg untersucht. Leider konnten diese Ergebnisse bisher nicht in die Klinik übertragen werden. Dies ist zumindest partiell auf das Fehlen eines Tiermodells mit spezifischer chronischer Degeneration der dopaminergen Neurone zurückzuführen. Dennoch konnten nun Ergebnisse vorgelegt werden, die nahe legen, dass der Verlauf dieser Erkrankung unter der Therapie mit Dopaminagonisten günstiger verläuft als unter der Behandlung mit L-DOPA. Gemessen wurde die Progredienz der Erkrankung mit der Darstellung der FDOPA-Aufnahme oder der Dopamintransporterbindung mittels nuklearmedizinischer Verfahren. Ob es sich hierbei um eine echte Neuroprotektion handelt, kann in Ermangelung der Kenntnis des natürlichen Verlaufs noch nicht beurteilt werden. Diese Studien geben zumindest Anlass zu der Hoffnung, dass in der nahen Zukunft auch der Nachweis der Neuroprotektion gelingen wird.

Abstract

Neuroprotection has been successfully applied using various in vitro and in vivo models for Parkinson's disease. Unfortunately, the translation of such positive results into clinical practice has not been possible. We believe that one of the main issues is the lack of an appropriate animal model with specific chronic progressive degeneration of dopaminergic neurons. However, recent clinical trials comparing the progression of the functional decline of dopaminergic neurons under treatment with a dopamine agonist compared with L-DOPA indicated that the degeneration of dopaminergic neurons is less pronounced when patients are treated with a dopamine agonist. The function of dopaminergic neurons was assessed using quantification of either FDOPA uptake or dopamine transporter binding. Whether dopamine agonists exert a true neuroprotective effect remains unknown as long as comparable data on the natural course are pending. There is considerable hope that neuroprotection will be proven in upcoming clinical trials.

Literatur

  • 1 Rajput A H, Offord K P, Beard C M. et al . Epidemiology of parkinsonism: incidence, classification, and mortality.  Ann Neurol. 1984;  16 278-282
  • 2 Schoenberg B S, Anderson D W, Haerer A F. Prevalence of Parkinson's disease in the biracial population of Copiah County, Mississippi.  Neurology. 1985;  35 841-845
  • 3 Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it.  Ann Neurol. 1992;  32 804-812
  • 4 Gerlach M, Double K, Riederer P. et al . Iron in the Parkinsonian substantia nigra.  Mov Disord. 1997;  12 258-260
  • 5 Berman S B, Hastings T G. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease.  J Neurochem. 1999;  73 1127-1137
  • 6 Schapira A H. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia.  Biochim Biophys Acta. 1999;  1410 159-170
  • 7 Janetzky B, Hauck S, Youdim M B. et al . Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson's disease.  Neurosci Lett. 1994;  169 126-128
  • 8 Reichmann H, Naumann M, Hauck S. et al . Respiratory chain and mitochondrial deoxyribonucleic acid in blood cells from patients with focal and generalized dystonia.  Mov Disord. 1994;  9 597-600
  • 9 Vajda F J. Neuroprotection and neurodegenerative disease.  J Clin Neurosci. 2002;  9 4-8
  • 10 Spencer P S, Roy D N, Ludolph A. et al . Lathyrism: evidence for role of the neuroexcitatory aminoacid BOAA.  Lancet. 1986;  2 1066-1067
  • 11 Ludolph A C, Spencer P S. Toxic models of upper motor neuron disease.  J Neurol Sci. 1996;  139, Suppl 53-59
  • 12 Labarca L, Schwarz J, Deshpande P. et al . Point mutant mice with hypersensitive a4 nicotinic receptors show dopaminergic deficits and increased anxiety.  Proc Natl Acad Sci USA. 2001;  98 2786-2791
  • 13 Gerlach M, Riederer P. Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man.  J Neural Transm. 1996;  103 987-1041
  • 14 Vizuete M L, Merino M, Cano J. et al . In vivo protection of striatal dopaminergic system against 1-methyl-4-phenylpyridinium neurotoxicity by phenobarbital.  J Neurosci Res. 1997;  49 301-308
  • 15 Zou L, Jankovic J, Rowe D B. et al . Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity.  Life Sci. 1999;  64 1275-1285
  • 16 Schapira A H. Neuroprotection and dopamine agonists.  Neurology. 2002;  58 S9-S18
  • 17 Felten D L, Felten S Y, Fuller R W. et al . Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged-Fischer-344 rats.  Neurobiol Aging. 1992;  13 339-351
  • 18 Schulz J B, Matthews R T, Muqit M M. et al . Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice.  J Neurochem. 1995;  64 936-939
  • 19 Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A. et al . Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease.  J Neurochem. 2000;  74 1605-1612
  • 20 Beal M F. Coenzyme Q10 as a possible treatment for neurodegenerative diseases.  Free Radic Res. 2002;  36 455-460
  • 21 Storch A, Ludolph A C, Schwarz J. HEK-293 cells expressing the human dopamine transporter are susceptible to low concentrations of 1-methyl-4-phenylpyridine (MPP+) via impairment of energy metabolism.  Neurochem Int. 1999;  35 393-403
  • 22 Matthews R T, Ferrante R J, Klivenyi P. et al . Creatine and cyclocreatine attenuate MPTP neurotoxicity.  Exp Neurol. 1999;  157 142-149
  • 23 Obinu M C, Reibaud M, Blanchard V. et al . Neuroprotective effect of riluzole in a primate model of Parkinson's disease: behavioral and histological evidence.  Mov Disord. 2002;  17 13-19
  • 24 Benazzouz A, Boraud T, Dubedat P. et al . Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study.  Eur J Pharmacol. 1995;  284 299-307
  • 25 Boireau A, Dubedat P, Bordier F. et al . Riluzole and experimental parkinsonism: antagonism of MPTP-induced decrease in central dopamine levels in mice.  Neuroreport. 1994;  5 2657-2660
  • 26 Turski L, Bressler K, Rettig K J. et al . Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.  Nature. 1991;  349 414-418
  • 27 Steece-Collier K, Chambers L K, Jaw-Tsai S S. et al . Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors.  Exp Neurol. 2000;  163 239-243
  • 28 Fredriksson A, Gentsch C, Archer T. Effect of the competitive NMDA antagonist, CGP 40 116, and a low dose of l-Dopa on the motor activity deficit of MPTP-treated mice.  Behav Pharmacol. 1994;  5 599-606
  • 29 Pidoplichko V, DeBiasi M, Williams J. et al . Nicotine activates and desensitizes midbrain dopamine neurons.  Nature. 1997;  390 401-404
  • 30 Grenhoff J, Janson A M, Svensson T H. et al . Chronic continuous nicotine treatment causes decreased burst firing of nigral dopamine neurons in rats partially hemitransected at the meso-diencephalic junction.  Brain Res. 1991;  562 347-351
  • 31 Janson A, Moller A. Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitransection: an analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat.  Neuroscience. 1993;  57 931-941
  • 32 Fenster C P, Whitworth T L, Sheffield E B. et al . Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine.  J Neurosci. 1999;  19 4804-4814
  • 33 Balfour D J. Neural mechanisms underlying nicotine dependence.  Addiction. 1994;  89 1419-1423
  • 34 Futami T, Takakusaki K, Kitai S T. Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta.  Neurosci Res. 1995;  21 331-342
  • 35 Piallat B, Benazzouz A, Benabid A L. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies.  Eur J Neurosci. 1996;  8 1408-1414
  • 36 Takada M, Matsumura M, Kojima J. et al . Protection against dopaminergic nigrostriatal cell death by excitatory input ablation.  Eur J Neurosci. 2000;  12 1771-1780
  • 37 Zazpe A, Del Rio J. Neurotrophins. II: therapeutic potential.  Rev Med Univ Navarra. 1997;  41 180-184
  • 38 Bradford H F, Zhou J, Pliego-Rivero B. et al . Neurotrophins in the pathogenesis and potential treatment of Parkinson's disease.  Adv Neurol. 1999;  80 19-25
  • 39 Kordower J H, Emborg M E, Bloch J. et al . Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease.  Science. 2000;  290 767-773
  • 40 Grondin R, Zhang Z, Yi A. et al . Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys.  Brain. 2002;  125 2191-2201
  • 41 Kragten E, Lalande I, Zimmermann K. et al . Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl.  J Biol Chem. 1998;  273 5821-5828
  • 42 Carvey P M, Pieri S, Ling Z D. Attenuation of levodopa-induced toxicity in mesencephalic cultures by pramipexole.  J Neural Transm. 1997;  104 209-228
  • 43 Sheng G, Zhang J, Pu X. et al . Protective effect of verbascoside on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells.  Eur J Pharmacol. 2002;  451 119
  • 44 Kofuji P, Hofer M, Millen K J. et al . Functional analysis of the mutant weaver GIRK2 potassium channel and rescue of weaver granule cells.  Neuron. 1996;  16 941-952
  • 45 Nadeau H, McKinney S, Anderson D J. et al . ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons.  J Neurophysiol. 2000;  84 1062-1075
  • 46 Snyder S H, Sabatini D M, Lai M M. et al . Neural actions of immunophilin ligands.  Trends Pharmacol Sci. 1998;  19 21-26
  • 47 Hirsch E C, Hunot S, Damier P. et al . Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration?.  Ann Neurol. 1998;  44 S115-120
  • 48 Parkinson-Study-Group . Effect of deprenyl on the progression of disability in early Parkinson's disease. The Parkinson Study Group.  N Engl J Med. 1989;  321 1364-1371
  • 49 Parkinson-Study-Group . Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. The Parkinson Study Group.  N Engl J Med. 1993;  328 176-183
  • 50 Uitti R J, Rajput A H, Ahlskog J E. et al . Amantadine treatment is an independent predictor of improved survival in Parkinson's disease.  Neurology. 1996;  46 1551-1556
  • 51 Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group.  N Engl J Med. 1994;  330 585-591
  • 52 Hellenbrand W, Seidler A, Robra B P. et al . Smoking and Parkinson's disease: a case-control study in Germany.  Int J Epidemiol. 1997;  26 328-339
  • 53 Gorell J M, Rybicki B A, Johnson C C. et al . Smoking and Parkinson's disease: a dose-response relationship (see comments).  Neurology. 1999;  52 115-119
  • 54 Kelton M C, Kahn H J, Conrath C L. et al . The effects of nicotine on Parkinson's disease.  Brain Cogn. 2000;  43 274-282
  • 55 Tanner C M, Goldman S M, Aston D A. et al . Smoking and Parkinson's disease in twins.  Neurology. 2002;  58 581-588
  • 56 Patel N K, Heywood P, Hotton G R. et al . Chronic intraputaminal infusion of glial derived neurotrophic factor (GDNF) in the treatment of advanced Parkinson's disease.  Mov Disord. 2002;  17, Suppl 5 S100
  • 57 Whone A L, Remy P, Davis M R. et al . The REAL-PET study: slower progression in early Parkinson's disease treated with ropinirole compared with L-DOPA.  Neurology. 2002;  58, Suppl A82-A83
  • 58 Marek K, Seibyl J, Shoulson I. et al . Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression.  JAMA. 2002;  287 1653-1661
  • 59 Oertel W H, Schwarz J, Leenders K L. et al . Results of a 3-year randomized, double-blind, PET-controlled study of pergolide vs L-dopa as monotherapy in early Parkinson's Disease (PELMOPET-trial).  J Neurol Sci. 2001;  187, Suppl S444
  • 60 Guttman M, Stewart D, Hussey D. et al . Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD.  Neurology. 2001;  56 1559-1564
  • 61 Nurmi E, Bergman J, Eskola O. et al . Reproducibility and effect of levodopa on dopamine transporter function measurements: a [18F]CFT PET study.  J Cereb Blood Flow Metab. 2000;  20 1604-1609
  • 62 Fahn S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs Later L-DOPA.  Arch Neurol. 1999;  56 529-535
  • 63 Shults C W, Oakes D, Kieburtz K. et al . Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline.  Arch Neurol. 2002;  59 1541-1550

Prof. Dr. med. Johannes Schwarz

Klinik und Poliklinik für Neurologie · Universität Leipzig

Liebigstraße 22 a

04103 Leipzig

eMail: tetu@medizin.uni-leipzig.de

    >